A mechanism for self-organization of the degree of connectivity in model
neural networks is studied. Network connectivity is regulated locally on the
basis of an order parameter of the global dynamics which is estimated from an
observable at the single synapse level. This principle is studied in a
two-dimensional neural network with randomly wired asymmetric weights. In this
class of networks, network connectivity is closely related to a phase
transition between ordered and disordered dynamics. A slow topology change is
imposed on the network through a local rewiring rule motivated by
activity-dependent synaptic development: Neighbor neurons whose activity is
correlated, on average develop a new connection while uncorrelated neighbors
tend to disconnect. As a result, robust self-organization of the network
towards the order disorder transition occurs. Convergence is independent of
initial conditions, robust against thermal noise, and does not require fine
tuning of parameters.Comment: 5 pages RevTeX, 7 figures PostScrip