29 research outputs found

    The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones.

    Get PDF
    OBJECTIVES: GPR142, which is highly expressed in pancreatic islets, has recently been deorphanized as a receptor for aromatic amino acids; however, its physiological role and pharmacological potential is unclear. METHODS AND RESULTS: We find that GPR142 is expressed not only in β- but also in α-cells of the islets as well as in enteroendocrine cells, and we confirm that GPR142 is a highly selective sensor of essential aromatic amino acids, in particular Trp and oligopeptides with N-terminal Trp. GPR142 knock-out mice displayed a very limited metabolic phenotype but demonstrated that L-Trp induced secretion of pancreatic and gut hormones is mediated through GPR142 but that the receptor is not required for protein-induced hormone secretion. A synthetic GPR142 agonist stimulated insulin and glucagon as well as GIP, CCK, and GLP-1 secretion. In particular, GIP secretion was sensitive to oral administration of the GPR142 agonist an effect which in contrast to the other hormones was blocked by protein load. Oral administration of the GPR142 agonist increased [3H]-2-deoxyglucose uptake in muscle and fat depots mediated through insulin action while it lowered liver glycogen conceivably mediated through glucagon, and, consequently, it did not lower total blood glucose. Nevertheless, acute administration of the GPR142 agonist strongly improved oral glucose tolerance in both lean and obese mice as well as Zucker fatty rat. Six weeks in-feed chronic treatment with the GPR142 agonist did not affect body weight in DIO mice, but increased energy expenditure and carbohydrate utilization, lowered basal glucose, and improved insulin sensitivity. CONCLUSIONS: GPR142 functions as a sensor of aromatic amino acids, controlling GIP but also CCK and GLP-1 as well as insulin and glucagon in the pancreas. GPR142 agonists could have novel interesting potential in modifying metabolism through a balanced action of gut hormones as well as both insulin and glucagon

    Enterochromaffin 5-HT cells : A major target for GLP-1 and gut microbial metabolites

    Get PDF
    Objectives 5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear. Methods and results TPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCRsensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1(TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistryusing a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometricmethod. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132. Conclusion Nutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1.Funding Agencies|Novo Nordisk Foundation [NNF10CC1016515, NNF15CC0018346, NNF15OC0016798, NNF14OC0016798]; Danish Council for Independent Research [7016-00389A]</p

    Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening.

    Get PDF
    SummaryRecent benchmark studies have demonstrated the difficulties in obtaining accurate predictions of ligand binding conformations to comparative models of G-protein-coupled receptors. We have developed a data-driven optimization protocol, which integrates mutational data and structural information from multiple X-ray receptor structures in combination with a fully flexible ligand docking protocol to determine the binding conformation of AR231453, a small-molecule agonist, in the GPR119 receptor. Resulting models converge to one conformation that explains the majority of data from mutation studies and is consistent with the structure-activity relationship for a large number of AR231453 analogs. Another key property of the refined models is their success in separating active ligands from decoys in a large-scale virtual screening. These results demonstrate that mutation-guided receptor modeling can provide predictions of practical value for describing receptor-ligand interactions and drug discovery

    Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells

    No full text
    Objective: GPR64/ADGRG2 is an orphan Adhesion G protein-coupled receptor (ADGR) known to be mainly expressed in the parathyroid gland and epididymis. This investigation aimed to delineate the cellular expression of GPR64 throughout the body with focus on the gastrointestinal (GI) tract. Methods: Transgenic Gpr64mCherry reporter mice were histologically examined throughout the body and reporter protein expression in intestinal tuft cells was confirmed by specific cell ablation. The GPCR repertoire of intestinal Gpr64mCherry-positive tuft cells was analyzed by quantitative RT-PCR analysis and in situ hybridization. The Gpr64mCherry was crossed into the general tuft cell reporter Trpm5GFP to generate small intestinal organoids for time-lapse imaging. Intestinal tuft cells were isolated from small intestine, FACS-purified and transcriptionally compared using RNA-seq analysis. Results: Expression of the Gpr64mCherry reporter was identified in multiple organs and specifically in olfactory microvillous cells, enteric nerves, and importantly in respiratory and GI tuft cells. In the small intestine, cell ablation targeting Gpr64-expressing epithelial cells eliminated tuft cells. Transcriptional analysis of small intestinal Gpr64mCherry -positive tuft cells confirmed expression of Gpr64 and the chemo-sensors Sucnr1, Gprc5c, Drd3, and Gpr41/Ffar3. Time-lapse studies of organoids from Trpm5GFP:Gpr64mCherry mice revealed sequential expression of initially Trpm5GFP and subsequently also Gpr64mCherry in maturing intestinal tuft cells. RNA-seq analysis of small intestinal tuft cells based on these two markers demonstrated a dynamic change in expression of transcription factors and GPCRs from young to mature tuft cells. Conclusions: GPR64 is expressed in chemosensory epithelial cells across a broad range of tissues; however, in the GI tract, GPR64 is remarkably selectively expressed in mature versus young immunoregulatory tuft cells
    corecore