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SUMMARY

Recent benchmark studies have demonstrated the
difficulties in obtaining accurate predictions of ligand
binding conformations to comparative models of
G-protein-coupled receptors. We have developed a
data-driven optimization protocol, which integrates
mutational data and structural information from
multiple X-ray receptor structures in combination
with a fully flexible ligand docking protocol to deter-
mine the binding conformation of AR231453, a
small-molecule agonist, in the GPR119 receptor.
Resulting models converge to one conformation
that explains the majority of data from mutation
studies and is consistent with the structure-activ-
ity relationship for a large number of AR231453
analogs. Another key property of the refined models
is their success in separating active ligands from
decoys in a large-scale virtual screening. These
results demonstrate that mutation-guided receptor
modeling can provide predictions of practical value
for describing receptor-ligand interactions and
drug discovery.

INTRODUCTION

Proteins of the G-protein-coupled receptor (GPCR) superfamily

regulate a broad range of physiological processes (Ritter and

Hall, 2009) and present attractive targets for drug discovery in

multiple therapeutic areas (Wise et al., 2002). Over the past

few years more than 20 distinct GPCRs have been crystallized

with a number of small-molecule antagonists, agonists, and a

G protein (Katritch et al., 2013; Rasmussen et al., 2011; Stevens

et al., 2013). Whereas the drug discovery process greatly bene-

fits from analysis of the structures of target receptors and their

interactions with ligands (Carlsson et al., 2010, 2011; Katritch

et al., 2010a; Kolb et al., 2009), this process has been limited

on targets lacking structural information.
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Even with the increase in structural information, recent

assessment and benchmark studies of GPCR structure

modeling and ligand docking methodologies have demon-

strated widespread difficulty in predicting native ligand binding

conformations to comparative GPCR models (Kufareva et al.,

2011, 2014; Michino et al., 2009; Nguyen et al., 2013). This is

due to the intrinsic flexibility of the seven transmembrane helices

(Deupi and Kobilka, 2010), water-filled pockets (Katritch et al.,

2013), and the involvement of extracellular loops in ligand bind-

ing (Beuming and Sherman, 2012; De Graaf et al., 2008; Shi and

Javitch, 2004). In general, accurate predictions were only

achieved when models were built on related template structures

(sequence similarity >35%) (Katritch et al., 2010a). With an esti-

mated >360 pharmaceutically relevant GPCRs in the human

genome (Vassilatis et al., 2003), it is anticipated that only up to

15% of the GPCR family can be reliably modeled based on the

current distinct experimental GPCR structures, signifying the

need for improved modeling methodologies for receptor targets

lacking closely related template structures.

Realizing these challenges, data-drivenmethods, which incor-

porate experimental information such as ligand structure-activity

relationships (SAR) (Katritch et al., 2010b), multiple template

structures (Kneissl et al., 2009), or mutational data (Michino

et al., 2009) have been proposed to guide the modeling and

refinement of receptor-ligand complexes.

In this study, we have developed a novel mutation-guided

docking protocol that uses the RosettaLigand docking protocol

(Kaufmann and Meiler, 2012; Lemmon and Meiler, 2011) with full

ligand and receptor flexibility in combination with experimental

data to guide the modeling and refinement of receptor-ligand

complexes. The protocol integrates (1) structural information

from multiple distinct high-resolution X-ray structures to create

a knowledge-based ensemble of receptor-ligand complexes

that captures the intrinsic flexibility of the known crystal struc-

tures, and (2) a large experimental library of mutated receptor

variants to guide and enhance the selection of native-like recep-

tor-ligand complexes based on correlations between predicted

binding energies and experimentally determined potency shifts

for all receptor variants.

We applied this method to refine models of the proto-

type agonist AR231453 (Figure 1) in complex with the
86, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2377
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Figure 1. Chemical Structure of the GPR119 Agonist, AR231453, and

a Helical Wheel Diagram of the Human GPR119 Receptor

ECL2b contains residues C-terminal to the cysteine in ECL2. Mutated residue

positions and the effect on ligand potency as determined in a cAMP assay (fold

change) are colored gray <5; 5 % yellow < 10; 10 % orange < 20; R20 red.
G-protein-coupled receptor 119 (GPR119), a lipid-responsive

class A receptor (Fredriksson et al., 2003). GPR119 has received

significant interest as a target for the treatment of type 2 diabetes

(Chu et al., 2007, 2008, 2010; Fyfe et al., 2008), with small-mole-

cule agonists (e.g. AR231453) reported to promote pancreatic

postprandial insulin and incretin secretion in a glucose-depen-

dent fashion (Semple et al., 2011). In a previous study we applied

classical docking methods to elucidate the binding mode of

AR231453 to GPR119, but were unable to discriminate between

multiple possible binding conformations (Engelstoft et al., 2014).

In this study we find a strong correlation around one binding

conformation, which explains the majority of the mutations and

is inagreementwithSAR for a largenumberofAR231453analogs.

Interestingly the mutation-guided models, in contrast to simple

homologymodels, proved successful in separating active ligands

fromdecoys in a large-scale retrospective structure-based virtual

ligand screening. This method of integrating experimental data

in combination with fully flexible receptor-ligand docking simula-

tions may serve as an important tool for structure-function anal-

ysis and guide the discovery of novel active chemotypes.

RESULTS

Modeling of the AR231453 GPR119 Receptor Complex
Full-length models of the human GPR119 receptor were gener-

ated using a multi-template approach by combining fragment

replacement and structural restraints from multiple GPCR

X-ray structures (see Supplemental Information). To account

for the substantial structural variability of ligand binding pocket

conformations in distinct GPCR crystal structures, we produced

a number of energetically feasible receptor conformations by

minimizing the energy of the backbone and side chains using

the Rosetta relax protocol and the membrane force field (Barth

et al., 2007; Leaver-Fay et al., 2011). Subsequent clustering

based on binding site residues in contact with ligands in the

template structures was used to generate a non-redundant

low-energy ensemble of 43 receptor models, which were used

as input in the docking simulations to broadly sample the binding

pocket geometry.
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A conformational ensemble of low-energy structures of

AR231453 (see Supplemental Information) was docked into the

receptor ensemble using the RosettaLigand docking protocol

that samples both receptor and ligand flexibility (Kaufmann

and Meiler, 2012; Lemmon and Meiler, 2011). A total of 43,000

receptor-ligand complexes were generated to extensively sam-

ple receptor-ligand binding conformations. To ensure that re-

ceptor flexibility of the binding pocket was sampled within the

structural variations observed in the experimental structures,

we discarded conformations in which Ca atoms of binding

pocket residues deviated by more than four standard deviations

from the variation in the corresponding Ca atom positions in 16

distinct experimental GPCR structures (see Supplemental Infor-

mation and Figure S2). The tolerated structural variability is illus-

trated in Figure 2A, which shows that some helices, especially

the top of transmembrane helix (TM-II), can assume several

different orientations, while others are more static.

Docking Simulations Converge to Two Binding
Orientations
To analyze the ligand binding space we measured the distance

from the sulfonyl moiety to the bottom of the binding pocket,

and the distance of the isopropyl group to the loop region in

the 43,000 generated receptor-ligand complexes. The ligands

in this ensemble assumed widely different binding conforma-

tions, as illustrated by the 100 randomly selected ligand orienta-

tions shown in gray in Figure 2B.

Ligand interaction energies were applied to reject loosely

packed binding conformations expected to be biologically irrel-

evant. We examined the resulting ensemble by analyzing the ten

most frequently occurring binding conformations. This revealed

two major ligand binding orientations, one in which the sulfonyl

group is in the loop region (SO2-out, illustrated in Figure 2B)

and the other where the ligand is flipped 180� so that the sulfonyl

is in the bottom of the binding site (SO2-in). Within each orien-

tation multiple conformations were seen. The frequency and

computed ligand binding energy of the two binding orientations

were similar. From the models alone it was difficult to discrimi-

nate between the two binding orientations, indicating that flexi-

bility filters alone are not sufficient to reach convergence.

Integration of Mutational Mapping Data Exhibits
Preference for One of the Binding Conformations
To further improve convergence of the predicted receptor-ligand

complexes, we developed a mutation-guided optimization pro-

tocol that correlates the binding affinity associated with a library

of GPR119 mutations with the computationally estimated bind-

ing energies. The analysis included 33 non-glycine, non-proline,

single-point mutations located in the ligand binding pocket (Fig-

ure 1 and Table 1).

The ligand binding energy associated with each mutation

would ideally be determined by measuring KD in a ligand binding

assay. However, since direct ligand binding assays are currently

unavailable for GPR119 we instead used a cyclic AMP (cAMP)

assay to determine the potency (EC50). By assuming a constant

mutation-independent relationship between KD and EC50, it is

anticipated that potency shifts provide a good surrogate mea-

sure of relative binding energies and correlation-based score.

However, this relationship might be different when receptor
All rights reserved
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Figure 2. Restricted Sampling of Receptor Flexibility Together with Mutation-Guided Methods Converges to One Major Binding Conforma-

tion of AR231453 to GPR119

(A) Biologically irrelevant receptor conformations were removed by filtering the generated GPR119/AR231453 ensemble using residue-specific limits for de-

viations from known GPCR crystal structures (see Supplemental Information). These limits of flexibility are illustrated as spheres on the b2-adrenergic receptor.

(B) In contrast to the filtered ensemble (green arrows with golden heads), the unfiltered ensemble yielded no strong preference for a particular binding

conformation (gray arrows with blue heads). The arrowhead points to the sulfonyl (S atom) of the ligand, while the tail is at the isopropyl moiety. A subset of

mutated residues are shown as sticks and colored according to potency shift upon mutation (Figure 1).

(C–E) To further remove biologically irrelevant binding conformations, we mapped the binding space based on the ligand orientation as a function of computed

interaction energy (Rosetta Energy Units) and the correlation coefficient between experimental and computational binding energy. The ligand orientation was

described as SO2-out when the sulfonyl group (arrowhead) was pointing to the extracellular side. Structures in the best-scoring quadrant (red dashed square in C)

and the SO2-out were both enriched with respect to frequency of sampling (D), and achieved higher correlation coefficients compared than the SO2-in

conformation (E).

See also Figures S2 and S3.
expression is compromised, and on this behalf we excluded four

variants (165Phe5.38Leu V:04, 165Phe5.38Ala V:04, 174Phe5.49Ala

V:13, and 154GlnECL2Ala 11) that decrease expression level to

less than 20% of the wild-type receptor (residues are numbered

according to the GPCR numbering system of Schwartz et al.,

1995 and Ballesteros and Weinstein, 1995). Mutations that alter

the functional integrity of the receptor, for example by disallow-

ing the active state, would also lead to misinterpretation. To

account for this we discarded one variant (238Trp6.48Ala VI:13)
Structure 23, 2377–23
with no constitutive activity that could not be activated by

the ligand. In addition we discarded one variant (81Arg3.27Ala

III:03) that was not in the ligand binding pocket. This left us

with a set of 28 GPR119 variants. The strongest decrease in re-

ceptor activation was observed for themutated residues located

in the extracellular segments of TM-III, -V, -VI, and -VII, as well as

in ECL2 and ECL3, as illustrated in Figure 1.

For each of the 43,000 receptor-ligand models we then

computed the Spearman correlation coefficient (SCC) between
86, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2379



Table 1. GPR119 Mutagenesis Data for AR231453

GPR119 Variant

Surface Expression Basal Activity Max. Efficacy AR231453 EC50

Potency Shift n Assay% SEM % SEM % SEM Log SEM nM

Wild-type 100 0.9 37 0.7 100 0.9 �8.73 0.03 1.9 26 A

Wild-type 100 0 56.5 1.8 99.4 1.9 �8.74 0.34 1.9 9 H

Binding Pocket

61Leu2.60Arg II:20* 29 4.4 30 5.1 70 5.2 �8.62 0.61 2.4 1 3 H

65Gln2.64Ala II:24* 122 9.4 31 5.3 99 7.1 �8.9 0.24 1.2 1 4 A

81Arg3.28Ala III:04 51 2.4 1.9 1.5 41 2.5 �7.94 0.15 11.6 6 4 A

82Met3.29Ala III:05* 78 5.8 8.3 1.4 24 1.9 �8.37 0.19 4.3 2 4 A

85Val3.32Ala III:08* 115 9.2 29 6 88 7.2 �8.8 0.28 1.6 1 4 A

86Thr3.33Ala III:09* 55 12 13 2.1 39 4.5 �7.8 0.36 15.8 8 4 A

86Thr3.33Val III:09* 71 14 32 7.2 61 6.2 �8.9 0.63 1.3 1 4 A

89Ala3.36Val III:12* 231 43 27 6 90 32 �6.99 0.81 103 54 4 A

162His5.35Ala V:01* 58 4.3 20 1.9 73 2.4 �8.75 0.08 1.8 1 3 A

165Phe5.38Ala V:04 2 2 8 1.8 28 2.9 �7.84 0.58 14 7 3 H

165Phe5.38Leu V:04 7 3 7.6 2.4 27 3.1 �8.34 0.13 4.6 2 3 H

166Val5.39Ala V:05* 53 9.1 35 6.6 70 8.5 �8.03 0.61 9.3 5 3 A

170Ser5.43Ala V:09* 157 17 57 7.5 108 7.4 �8.64 0.38 2.3 1 4 A

170Ser5.43Val V:09* 164 30 12 3.5 77 5 �8.02 0.16 9.7 5 4 A

174Phe5.47Ala V:13 20 4.5 26 3 53 4.3 �8.24 0.18 5.7 3 2 H

238Trp6.48Ala VI:13 40 2.6 – – – – – – >10,000 >5,000 4 A

241Phe6.51Ala VI:16* 72 4.7 11 1.8 27 4.4 �7.47 0.5 34 18 3 A

242Leu6.52Ala VI:17* 39 4.9 55 3 103 3.6 �8.52 0.08 3 2 3 H

248Gln6.58Ala VI:23* 111 18 31 7.9 87 11 �8.07 0.41 8.6 5 3 A

261Glu7.35Ala VII:02* 54 5.1 13 1.3 54 3.3 �7.75 0.16 17.7 9 4 A

262Arg7.36Ala VII:03* 50 4.1 �0.1 0.7 18 1.2 �8.01 0.14 9.8 5 4 A

265Trp7.39Ala VII:06* 40 2.8 34 2.7 – – – – >10,000 >5,000 5 A

ECL2a

Gln11Ala (154) 16 6.3 28 2.7 63 2.8 �8.9 0.24 1.3 1 3 H

ECL2b

156Sercys155+1Ala* 71 3.5 6.9 1.3 48 2.2 �8.44 0.12 3.7 2 3 A

157Phecys155+2Ala* 69 4.4 6.4 0.5 23 1.7 �6.83 0.18 147 77 5 A

158Phecys155+3Ala* 73 3.6 5.1 0.6 24 1.5 �7.19 0.13 65 34 5 A

160Valcys155+5Ala* 66 3.4 5.7 0.9 34 1.4 �8.13 0.11 7.4 4 3 A

161Phecys155+6Ala* 56 2.3 5.6 1 21 1.2 �8.65 0.15 2.2 1 3 A

ECL3

252Gln6.62Ala* 51 6.4 49 8.8 83 9.9 �8.69 0.46 2.1 1 3 H

253Glu6,63Ala* 31 5.9 48 4.8 99 5.5 �8.7 0.18 2 1 3 H

255His6.64Ala* 43 10.4 33 4.2 76 4.7 �8.76 0.13 1.7 1 3 H

256Leu6.65Ala* 44 14.8 54 2 96 6 �7.19 0.35 65 34 4 H

258Leu6.67Ala* 48 7.5 44 6.3 96 7.6 �8.52 0.18 3 2 3 H

Surface expression, basal activity, efficacy, potency, and potency fold change for wild-type human GPR119 and receptor mutants. Residues used for

correlation analysis are marked by an asterisk. Two assays were used: Alumnia (A) and Hithunter (H). We described data derived from the Alumnia

assay in a previous study (Engelstoft et al., 2014).
the computationally predicted and experimentally estimated

binding energies for each of the 28 mutated receptor variants.

The density of ligand binding orientation as a function of interac-

tion energy and correlation coefficient for the generated complex

ensemble is shown in Figure 2C.

We note that despite the exclusion of mutations with

decreased expression level or lack of constitutive activity, a
2380 Structure 23, 2377–2386, December 1, 2015 ª2015 Elsevier Ltd
strong correlation between experimental potency shifts and

computational binding energies cannot be expected due to the

inherent approximations of themeasure. Therefore, when further

analyzing the structures we applied a conservative correlation

cutoff of 0.25, while taking the 10%most energetically favorable

models and discarding all structures violating the allowed

backbone flexibility (Figure 2D). Clustering the resulting 207
All rights reserved
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Figure 3. The Mutational Data and SAR

Support the Refined Ligand Binding

Conformation

(A) The predicted binding mode of AR231453 is

consistent with the SAR of ligands. The most likely

GPR119/AR231453 complex with residues are

colored according to potency shift on AR231453

upon mutation (gray <5; 5 % yellow < 10; 10 %

orange < 20; R20 red). The sulfonyl group is situ-

ated in the extracellular part of the receptor, with

room for large substitutions, which only have a mi-

nor effect on ligand potency. Conversely, sub-

stitutions are not tolerated at the bottom of the

binding pocket, which packs tightly around the

ligand. The surface of the binding pocket is colored

according to the potency shift of the nearest res-

idue.

(B) Ligplot of predicted AR231453 GPR119 in-

teractions (Table 1). AR231453 is predominantly

in contact with residues affecting the potency

upon mutation. Mutations that did not affect the

potency of AR231453 (gray) could in most cases be

explained by their remote position relative

to AR231453 in the models. The isopropyl-ox-

adiazole moiety is involved in H-bond interactions

with 86Thr3.33 III:09, 170Ser5.42 V:09.

(C) The chemical moieties responsible for the

distinct pharmacology of AR437735 (agonist)

and AR437948 (inverse agonist) mimic the common

oxadiazole moiety found in many GPR119 agonists

(green shaded area), predicted to be involved

in different interactions with 86Thr3.33 III:09,

170Ser5.42 V:09.

See also Figure S4.
structures with a clustering radius of 2.5 Å root-mean-square

deviation (RMSD) for the ligand position resulted in 73 clusters.

The ten most populated clusters were strongly preferred and

numbered approximately half of the structures. Among these,

95% of the models were in the SO2-out binding conformation

(Figure 2B, green arrows), which also had a better binding energy

score and higher correlation coefficients with the experimental

data than the SO2-in binding conformation (Figure 2E). Repre-

sentative low-energy models with high SCC scores from the

five most populated binding modes all shared the SO2-out

binding conformation (Figure S3). Corresponding PDB files of

the complexes are provided in the Supplemental Information.

Mutagenesis Data and Ligand SAR Support Predicted
Binding Modes of AR231453 in GPR119
Due to the inherent inaccuracy of the force field and the use of

potency shifts as a proxy for the actual binding energy, it is un-

clear whether any of the models would have atomic accuracy,

and we do indeed see variations between the different clusters

in the SO2-out conformation. The structures from the largest

clusters do, however, generally occupy the same binding pocket

surrounded by key residues situated at helices II, V, VI, VII, and

the extracellular loops.

Figure 3 shows a representative binding conformation from

the largest cluster where the ligand forms very few contacts to

residues not affecting ligand potency, but forms contacts to

all residues affecting ligand potency by more than 20-fold. The
Structure 23, 2377–23
two phenylalanines of ECL2 (157FCys155+2 and 158FCys155+3)

and the leucine of ECL3 (L256A) pack tightly around the 2-flu-

oro-4-methanesulfonyl-phenyl moiety, but leaves the methyl

group exposed. This is consistent with ligand SAR previously

reported by Semple et al. (2008), who showed that large substi-

tutions can be made to the methyl moiety without dramatic

effects on ligand potency (Figure 3). Notably, this SAR further

validates the SO2-out binding conformation in contrast to the

SO2-in, which is incompatible with large substitutions at the

SO2 group.

The 5-nitro-pyrimidine core at the middle of the ligand is

loosely packed at the binding pocket in contrast to the 4-meth-

anesulfonylphenyl and oxadiazole termini (see below), which

appear to be more tightly bound. Looking across the largest

clusters we see some variation in the exact location of this group.

In many cases, it is packed against a phenylalanine (241Phe6.51

VI:16) and a tryptophan (265Trp7.39 VII:06), with the nitro group

exposed to a water-filled cavity. In the most common binding

conformation, the aniline linker makes H-bond donor interac-

tions with the glutamate (261Glu7.35 VII:02), supporting a 9-fold

change in ligand potency upon mutation to alanine. In other

clusters 261Glu7.35 VII:02 is involved in internal residue-residue

interactions with the spatial nearby residues 248Gln6.58 VI:23

and 262Arg7.36 VII:03, which moderately affects potency when

mutated to alanine. The loose packing of the 5-nitro-pyrimidine

core is also to be expected, as many GPR119 agonists

differ greatly in their middle portions (Table S1), while the end
86, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2381



Initial homology models                    AUC         EF(1%)      EF(10%)
1.   Raw homology model (A2aAR template)  0.54 0.46 1.38
2.   Hybrid GPR119 model   0.54 0.92 1.38
3.   Refined model (Rosetta relax)  0.43 1.35 0.72

Best performing mutation guided models 
4.   Mutation guided model (cluster 7) 0.85 26.0 6.18
5.   Mutation guided model (cluster 2) 0.83 36.8 6.28
6.   Mutation guided model (cluster 8) 0.80 17.0 5.25
7.   Mutation guided model (cluster 1) 0.78 25.6 5.29
8.   Mutation guided model (cluster 1) 0.78 22.9 5.38
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Figure 4. Refined Receptor Models Enrichment of Active Com-

pounds in an In Silico Screen
(A) Percentage of recovered actives as function of screened compounds is

shown for models from different stages of the protocol. The initial homology

models (gray) had a lower docking performance compared with the five

best-performing models (red and green) derived from the mutation-guided

optimization protocol. Inset shows a normal view of the ROC curves. The false-

positive rate as a function of screened compounds is shown on a logarithmic

scale to highlight the initial enrichment at 1% of the dataset.

(B) Summary of key characteristics of the corresponding ROC curves and

virtual screening performance.

See also Table S1.
termini are often the same—namely a methanesulfonyl at one

end, and an aminooxadiazole or carbamate at the other.

Because these polar side chains have the ability to both make

H-bond interactions with each other and/or a ligand, the models

in the largest clusters support the binding of different 5-nitro-

pyrimidine substitutions of, for example, the nitro group and an

N/O/CH2 linker.

The oxadiazole moiety is located at the bottom of the bind-

ing pocket surrounded by 170Ser5.31 V:09, 86Thr3.33 III:09, and

89Ala3.36 III:12. The mutational data suggest that there is limited

space available, as a mutation of alanine to valine results in a

50-fold decrease of potency. This behavior is also consistent

with ligand SAR, which allows limited extension of the isopropyl

group, consistent with a small pocket that can be recognized

in some of the models, but disallows larger substitutions.

Again, ligand SAR favors the SO2-out conformation over the

SO2-in.
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Related Binding Conformation of an Agonist and an
Inverse Agonist
In the optimization process of pharmacologically attractive

GPR119 agonists, we identified ligands for which single

atom substitutions could change the efficacy from agonist

(AR437735) to inverse agonist (AR437948) (Figures 3C and S4;

Supplemental Information). The models and the similarity of

the ligands with AR231453 suggest that they bind in a similar

fashion as AR231453 (Figure 3B). The chemical moieties

responsible for the distinct pharmacology mimics the common

oxadiazole moiety found in many GPR119 agonists (Semple

et al., 2011), predicted to be involved in interactions with

86Thr3.33 III:09 and 170Ser5.42 V:09. That the activity of the

ligand can be modulated with a thioester/thionoester substitu-

tion is perhaps not entirely surprising, as the energy difference

between active and inactive states must be fairly small in

GPR119 since it is a constitutively active receptor. It could

thus be possible that the minor difference in H-bond acceptor

properties between the two ligands is sufficient to stabilize

two different conformations. Another possibility is that the

ligands adopt different conformations in the receptor. Indeed,

a conformational analysis reveals that both ligands are isoener-

getic (<0.1 kcal/mol) with respect to having the thioester/

thionoester axial or equatorial to the piperidine ring. A similar

conformation-based hypothesis has also been proposed by

McClure et al. (2011) to describe the agonist response of a

related GPR119 agonist.

Mutation-Guided Receptor-Ligand Models Dramatically
Improve Virtual Screening Performance Related to Drug
Discovery Applications
To further validate the GPR119 models, we evaluated their per-

formance in virtual ligand screening for their ability to discrimi-

nate known actives from decoys. We created a library of 223

known GPR119 active ligands (Table S1) extracted from

ChEMBL (Gaulton et al., 2012) and 91,712 screening com-

pounds (decoys) with similar molecular property distribution as

active compounds extracted from vendor databases (see Sup-

plemental Information). We identified the five best-performing

models from the ten largest clusters in terms of active compound

scoring with SurflexDock (Jain, 2003). Active and decoy com-

pounds were then docked against those fivemodels. The perfor-

mance was evaluated based on the percentage of recovered

active compounds, the corresponding area under the receiver-

operating characteristic (ROC) curve (AUC), and the computed

enrichment factors (EF) for the top 1% and 10% ranked com-

pounds. Only suboptimal docking performance and low selec-

tivity of known active compounds (AUC = 0.54, EF1% = 0.5,

EF10% = 1.4) were achieved for the initial homology model based

on the closest related A2aAR template structure (Figure 4).

Equally low selectivity (AUC = 0.54, EF1% = 0.9, EF10% = 1.4)

was found for the hybrid homology model. The ensemble of

relaxed models used as input in the docking simulations all per-

formed worse than random and revealed poor docking scores of

actives as well as decoys. This might be related to a partial

collapse of the ligand binding pocket as a result of the initial re-

ceptor optimization in the absence of a ligand, and provides a

warning against the use of simple homology models or relaxed

homology models in in silico screening.
All rights reserved



In contrast, the models developed through the mutation-

guided docking protocol demonstrated a dramatic improve-

ment in virtual screening performance compared with the initial

homology models and random baseline (Figures 4 and S4). The

five best-performing models represented members of some of

the largest clusters and were all in the SO2-out binding orienta-

tion. The overall best-performing model demonstrated good vir-

tual screening performance (AUC = 0.85) and early enrichment

(EF1% = 26.0 and EF10% = 6.18). The second best-performing

model (AUC = 0.83), representing the second most populated

docking mode, was especially efficient in respect of initial

enrichment (EF1% = 36.8). Good initial enrichment (EF1% =

25.6) was also achieved for the most populated binding

mode. In comparison, the best SO2-in model had a poor

screening performance (AUC = 0.65) and early enrichment

(EF1% = 13.9). Notably, these screening performances are com-

parable with the virtual screening performance that can be ex-

pected from a high-resolution crystal structure (Spitzer and

Jain, 2012), suggesting that the mutation-guided models might

be valuable in virtual screening applications aimed at identifying

novel active chemotypes. Indeed, among the top 1% scoring

compounds the virtual screening did not only enrich for agonists

similar to AR231453, but also identified active compounds lack-

ing the preferred sulfonyl and oxadiazole moiety. For instance,

across all models described in Figure 4, 13% of the hits had

both features, 75% had only one of them, and the last 12%

had none. In comparison, the full dataset of active compounds

contained 8% with both, 54% with only one, and 38% missing

both.

DISCUSSION

This study shows that mutagenesis data can be used in a sys-

tematic and unbiased way to counter the poor force field perfor-

mance of GPCR/small-molecule docking, and thus generate

models in agreement with ligand SAR and of sufficient quality

to support structure-based drug design. In this work we specif-

ically focused on the GPR119 receptor in complex with a proto-

type agonist.

Themajor challenges in small-molecule docking arise frommi-

nor inaccuracies in structural models due to alignment inaccur-

acies, the lack of explicit water molecules, and inaccuracies of

the force field, combined with the necessity for intensive confor-

mational sampling. These inaccuracies often preclude the use

of energies to reliably discriminate between correct and incor-

rect models (Fleishman and Baker, 2012; Lu et al., 2007). The

problem is even greater for GPCRs, where the receptor itself bal-

ances between discrete substates of active and inactive confor-

mations (Deupi and Kobilka, 2010; Manglik and Kobilka, 2014;

Staus et al., 2014) that, for constitutive active receptors, can

be separated by less than 1 kcal/mol. To counter this challenge,

ligand structure-activity relationship data (Katritch et al., 2010b)

and mutagenesis data (Kufareva et al., 2011; Michino et al.,

2009; Nguyen et al., 2013) can be used to increase the accuracy

of generated receptor-ligand models by complementing the

energy function.

The use of mutagenesis data does, however, pose a problem,

as many residues affect ligand binding indirectly and thus do not

allow for a simple residue-by-residue interpretation (Jaakola
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et al., 2010; Kim et al., 2003). This problem is not widely appre-

ciated in the docking literature, where manual selection of spe-

cific residues for which residue-ligand ‘‘must-have-contact’’

constraints are defined to reject or accept models from ligand

docking ensembles. To avoid this binary approach that is prone

to misinterpretation, we developed an unbiased protocol to

refine and increase the accuracy of a receptor-ligand ensemble

using knowledge-based filters and correlations with a large set of

experimental mutation data in combination with a fully flexible re-

ceptor-ligand docking protocol. The protocol enables an unbi-

ased selection and refinement of models best suited to describe

ligand bound states, which convincingly support the majority of

the mutational mapping.

The generated models cluster around one major binding

conformation, which is coherent with SAR of GPR119 ligands.

Minor extension at the isopropyl-oxadiazole moiety improves

binding affinity by filling out a cavity at the ligand-receptor inter-

face, while larger substitutions result in clashes and are detri-

mental for potency. The other end of the ligand is solvent

exposed and allows for larger substitutions. The models demon-

strate the ability to enrich a broad selection of diverse high-

affinity GPR119 agonists (belonging to several different scaffold

classes not employed in model optimization), supporting the

protocol’s suitability for drug discovery and structure-based

drug design applications.

Comparison of the AR231453 binding conformation in

GPR119 (Figure 3A) to bound ligands in recently solved GPCR

structures suggests that AR231453 occupies a similar position

in the transmembrane domain as agonist bound (e.g. UK-

432097) A2AAR structures (Xu et al., 2011). Analysis of agonist

and antagonist bound A2AAR and b1AR structures suggests

that agonists (in contrast to antagonists) makes distinct interac-

tions with polar residues in the lower part of the binding pocket

(just above the conserved Trp6.48 VI:13) in both A2AAR (Ser7.42

VII:09 and His7.43 VII:10) (Katritch et al., 2010a; Lebon et al.,

2011a; Xu et al., 2011) and b1AR (Ser5.46 V:12) (Warne et al.,

2011) to promote or stabilize an active receptor state (Dal Ben

et al., 2010; Kim et al., 2003; Lebon et al., 2011b). Interestingly,

the atom substitutions resulting in the efficacy switch from

agonist (AR437735) to inverse agonist (AR437948) occur in the

same area as the residues involved in H-bond interactions

responsible for triggering the agonist response in A2AAR and

b1AR (Figure 3C). At present the extent and duration of activation

of the receptor needed for maximum clinical benefit are not

known. Chemical modification to this portion of the molecule

could prove important for agonist design to identify pharmaco-

logically superior agonists.

To further the use of mutational data in ligand docking, we are

currently developing methods that will allow on-the-fly optimiza-

tion of correlation with experimental data. Likewise, further

development of position-specific backbone constraints for

homology model construction is expected to be useful, not

only for GPCR homology modeling but for flexible backbone

modeling of any structure from a family with multiple solved

structures.

Conclusion
In the absence of a crystal structure, theoretical modeling and

mutagenesis analysis are important tools in characterizing the
86, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2383



structural basis of ligand binding. We have developed an unbi-

ased mutation-guided docking protocol in combination with

RosettaLigand to characterize the structural basis for ligand

binding to the GPR119 receptor. This protocol uses intrinsic

flexibility of distinct GPCR crystal structures and correlations

between predicted binding energies and experimentally deter-

mined potency shifts for a large number of mutated receptor

variants. The generated models of ligand binding to GPR119

are consistent with mutational data and SAR, and are sufficiently

accurate to support structure-based design efforts for this

target. Although the current mutation-guided simulation protocol

was limited to GPR119, the protocol can be translated to other

receptors and possibly provide important guidance for GPCR

modeling in general.

EXPERIMENTAL PROCEDURES

Experimental Determination of Binding Potency

AR231453 was synthesized as previously described (Semple et al., 2008).

Synthesis of AR437735 and AR437948 is described in Supplemental Experi-

mental Procedures. The construction of the GPR119 variants and effect of

the mutations on the constitutive and ligand-induced (AR231453) receptor

activation was determined with cAMP accumulation assays in transfected

COS7 cells as described in Supplemental Experimental Procedures. Surface

expression and basal activity of human GPR119 wild-type and receptor mu-

tants along with efficacy and potency of AR231453, as well as the potency

fold change between wild-type and mutants, are listed in Table 1.

Construction of Comparative GPR119 Homology Models

We constructed two GPR119 models assembled by fragments from three

distinct class A GPCRs including the adenosine A2a receptor (PDB: 3EML),

the CXCR4 (PDB: 3ODU) receptor, and the dopamine D3 (PDB: 3PBL) receptor

(Figure S1). Models were constructed using dopamine D3 to model ECL3,

CXCR4 to model ECL2a, and A2a or CXCR4 to model TM IV, while the rest

of the receptor was modeled using A2a. Side chains for all residues were

optimized, and the models were subsequently minimized using 200 steps of

steepest descent and 300 steps of conjugated gradient-energy minimization

as implemented in ICM version 3.7-2 (Molsoft). The initial GPR119 homology

models were refined using Rosetta version 3.2.1. Specifically, the seven initial

homology models were subjected to 1,000 steps of full-atom structure relax-

ation using the membrane force field (Barth et al., 2007). During the relax

protocol, a disulfide bridge between 78Cys3.25 III:01 and 155CysECL2b in the

second extracellular loop was specified. The best 300 (top 30%) scored

models derived from each of the initial structures were clustered with respect

to the RMSD of the residues surrounding the binding pocket, thus selecting 43

major structural low-energy variants.

Unbiased Mutation-Guided Docking of AR231453

A conformational ensemble of AR231453 containing nine conformations within

3 kcal/mol of the global minimumwas generated in ICM version 3.7-2 using the

Merck Molecular Force Field (MMFF) and a generalized Born implicit solvation

model. To extensively sample the ligand binding conformations of AR231453

in a 5-Å docking sphere around 265Trp7.39 VII:06 in GPR119, we generated

43,000 complexes with the RosettaLigand XML docking protocol (Davis and

Baker, 2009; Lemmon andMeiler, 2011; Meiler and Baker, 2006). The resulting

models were filtered based on three criteria. First, we discarded the 90%

worst-scoring structures with regard to binding energy. Second, models

were only accepted if all residues lining the pocket did not deviate by more

than four standard deviations from the average Ca coordinate for that position,

as observed in experimental GPCR structures. Third, acknowledging that no

single residue in a one-sided mutational mapping can be safely interpreted

as a ligand-contacting residue, we developed a correlation-based scoring

scheme (Figure S3).

The binding energy was estimated by introducing each experimentally

assessed point mutation in the 43,000 models, and measuring the energy of
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the complex and of the receptor and ligand separately. To reduce the amount

of residues, which indirectly could affect ligand binding, we included only non-

proline and non-glycine residues. Likewise, to ensure that the receptor

remained functional, we discarded all receptor variants in which constitutive

activity was eliminated, unless they could still be activated by the ligand. We

required that the surface expression be at least 20% of the wild-type and

that the mutated residues were situated on the inside of the binding pocket

or in the loop region. These criteria left us with 28 point mutations in

GPR119 (Table 1). The correlation between the computed binding energies

and the experimentally determined binding energies was then determined

for each of the 43,000 binding conformations. The correlation was measured

as the SCC, a rank-based correlation score which, compared with the Pearson

correlation coefficient, is less sensitive to outliers. Finally, the models that

passed the filters described above and correlated better than 0.25 with the

experimental data were clustered (based on ligand binding conformation) in

bins of 2.5 Å RMSD using BCL::Cluster to quantitate the general trends in

the ensemble (Alexander et al., 2011).

Conformational Analysis of AR437735 and AR437948

The MMFF with a generalized Born solvation model was used to calculate the

difference in energy between axial and equatorial conformations of AR437735

and AR437948 using ICM 3.7-3 (Molsoft) with maximum number of conforma-

tions = 50, vicinity = 15, thoroughness = 10, and sample rings and Cartesian

refinement checked.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.str.2015.09.014.
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and Wüthrich, K. (2013). The GPCR Network: a large-scale collaboration to

determine human GPCR structure and function. Nat. Rev. Drug Discov. 12,

25–34.

Vassilatis, D.K., Hohmann, J.G., Zeng, H., Li, F., Ranchalis, J.E., Mortrud, M.T.,

Brown, A., Rodriguez, S.S., Weller, J.R., Wright, A.C., et al. (2003). The G pro-
2386 Structure 23, 2377–2386, December 1, 2015 ª2015 Elsevier Ltd
tein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci.

USA 100, 4903–4908.

Warne, T., Moukhametzianov, R., Baker, J.G., Nehmé, R., Edwards, P.C.,
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