830 research outputs found

    Non-imprisonment conditions on spacetime

    Full text link
    The non-imprisonment conditions on spacetimes are studied. It is proved that the non-partial imprisonment property implies the distinction property. Moreover, it is proved that feeble distinction, a property which stays between weak distinction and causality, implies non-total imprisonment. As a result the non-imprisonment conditions can be included in the causal ladder of spacetimes. Finally, totally imprisoned causal curves are studied in detail, and results concerning the existence and properties of minimal invariant sets are obtained.Comment: 12 pages, 2 figures. v2: improved results on totally imprisoned curves, a figure changed, some misprints fixe

    Compactness of the space of causal curves

    Full text link
    We prove that the space of causal curves between compact subsets of a separable globally hyperbolic poset is itself compact in the Vietoris topology. Although this result implies the usual result in general relativity, its proof does not require the use of geometry or differentiable structure.Comment: 15 page

    A Coboundary Morphism For The Grothendieck Spectral Sequence

    Full text link
    Given an abelian category A\mathcal{A} with enough injectives we show that a short exact sequence of chain complexes of objects in A\mathcal{A} gives rise to a short exact sequence of Cartan-Eilenberg resolutions. Using this we construct coboundary morphisms between Grothendieck spectral sequences associated to objects in a short exact sequence. We show that the coboundary preserves the filtrations associated with the spectral sequences and give an application of these result to filtrations in sheaf cohomology.Comment: 18 page

    On extending actions of groups

    Full text link
    Problems of dense and closed extension of actions of compact transformation groups are solved. The method developed in the paper is applied to problems of extension of equivariant maps and of construction of equivariant compactifications

    Functions of several Cayley-Dickson variables and manifolds over them

    Full text link
    Functions of several octonion variables are investigated and integral representation theorems for them are proved. With the help of them solutions of the ~{\tilde {\partial}}-equations are studied. More generally functions of several Cayley-Dickson variables are considered. Integral formulas of the Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are proved in the new generalized form for functions of Cayley-Dickson variables instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson graded algebras are defined and investigated

    On two-dimensional surface attractors and repellers on 3-manifolds

    Get PDF
    We show that if f:M3M3f: M^3\to M^3 is an AA-diffeomorphism with a surface two-dimensional attractor or repeller B\mathcal B and MB2 M^2_ \mathcal B is a supporting surface for B \mathcal B, then B=MB2\mathcal B = M^2_{\mathcal B} and there is k1k\geq 1 such that: 1) MB2M^2_{\mathcal B} is a union M12...Mk2M^2_1\cup...\cup M^2_k of disjoint tame surfaces such that every Mi2M^2_i is homeomorphic to the 2-torus T2T^2. 2) the restriction of fkf^k to Mi2M^2_i (i{1,...,k})(i\in\{1,...,k\}) is conjugate to Anosov automorphism of T2T^2

    On chains in HH-closed topological pospaces

    Full text link
    We study chains in an HH-closed topological partially ordered space. We give sufficient conditions for a maximal chain LL in an HH-closed topological partially ordered space such that LL contains a maximal (minimal) element. Also we give sufficient conditions for a linearly ordered topological partially ordered space to be HH-closed. We prove that any HH-closed topological semilattice contains a zero. We show that a linearly ordered HH-closed topological semilattice is an HH-closed topological pospace and show that in the general case this is not true. We construct an example an HH-closed topological pospace with a non-HH-closed maximal chain and give sufficient conditions that a maximal chain of an HH-closed topological pospace is an HH-closed topological pospace.Comment: We have rewritten and substantially expanded the manuscrip

    Bounded and unitary elements in pro-C^*-algebras

    Full text link
    A pro-C^*-algebra is a (projective) limit of C^*-algebras in the category of topological *-algebras. From the perspective of non-commutative geometry, pro-C^*-algebras can be seen as non-commutative k-spaces. An element of a pro-C^*-algebra is bounded if there is a uniform bound for the norm of its images under any continuous *-homomorphism into a C^*-algebra. The *-subalgebra consisting of the bounded elements turns out to be a C^*-algebra. In this paper, we investigate pro-C^*-algebras from a categorical point of view. We study the functor (-)_b that assigns to a pro-C^*-algebra the C^*-algebra of its bounded elements, which is the dual of the Stone-\v{C}ech-compactification. We show that (-)_b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand-duality for commutative unital pro-C^*-algebras is also presented.Comment: v2 (accepted

    INSIG1 influences obesity-related hypertriglyceridemia in humans

    Get PDF
    In our analysis of a quantitative trait locus (QTL) for plasma triglyceride (TG) levels [logarithm of odds (LOD) = 3.7] on human chromosome 7q36, we examined 29 single nucleotide polymorphisms (SNPs) across INSIG1, a biological candidate gene in the region. Insulin-induced genes (INSIGs) are feedback mediators of cholesterol and fatty acid synthesis in animals, but their role in human lipid regulation is unclear. In our cohort, the INSIG1 promoter SNP rs2721 was associated with TG levels (P = 2 × 10−3 in 1,560 individuals of the original linkage cohort, P = 8 × 10−4 in 920 unrelated individuals of the replication cohort, combined P = 9.9 × 10−6). Individuals homozygous for the T allele had 9% higher TG levels and 2-fold lower expression of INSIG1 in surgical liver biopsy samples when compared with individuals homozygous for the G allele. Also, the T allele showed additional binding of nuclear proteins from HepG2 liver cells in gel shift assays. Finally, the variant rs7566605 in INSIG2, the only homolog of INSIG1, enhances the effect of rs2721 (P = 0.00117). The variant rs2721 alone explains 5.4% of the observed linkage in our cohort, suggesting that additional, yet-undiscovered genes and sequence variants in the QTL interval also contribute to alterations in TG levels in humans

    A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube

    Get PDF
    We compare the forcing related properties of a complete Boolean algebra B with the properties of the convergences λs\lambda_s (the algebraic convergence) and λls\lambda_{ls} on B generalizing the convergence on the Cantor and Aleksandrov cube respectively. In particular we show that λls\lambda_{ls} is a topological convergence iff forcing by B does not produce new reals and that λls\lambda_{ls} is weakly topological if B satisfies condition ()(\hbar) (implied by the t{\mathfrak t}-cc). On the other hand, if λls\lambda_{ls} is a weakly topological convergence, then B is a 2h2^{\mathfrak h}-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement "The convergence λls\lambda_{ls} on the collapsing algebra B=\ro ((\omega_2)^{<\omega}) is weakly topological" is independent of ZFC
    corecore