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A CONVERGENCE ON BOOLEAN ALGEBRAS GENERALIZING

THE CONVERGENCE ON THE ALEKSANDROV CUBE

Miloš S. Kurilić, Aleksandar Pavlović, Novi Sad

(Received April 22, 2013)

Abstract. We compare the forcing-related properties of a complete Boolean algebra B with
the properties of the convergences λs (the algebraic convergence) and λls on B generalizing
the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show
that λls is a topological convergence iff forcing by B does not produce new reals and that
λls is weakly topological if B satisfies condition (h̄) (implied by the t-cc). On the other

hand, if λls is a weakly topological convergence, then B is a 2
h-cc algebra or in some generic

extension the distributivity number of the ground model is greater than or equal to the
tower number of the extension. So, the statement “The convergence λls on the collapsing
algebra B = ro(<ω

ω2) is weakly topological” is independent of ZFC.

Keywords: complete Boolean algebra; convergence structure; algebraic convergence; forc-
ing; Cantor cube; Aleksandrov cube; small cardinal
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1. Introduction

The object of our study is the interplay between the forcing-related properties of

a complete Boolean algebra B and the properties of convergence structures defined

on B. In Section 3 we observe the algebraic convergence λs, generalizing the conver-

gence on the Cantor cube and generating the sequential topology Oλs introduced by

Maharam and investigated in the context of von Neumann and Maharam’s problem.

In the rest of the paper we investigate the convergence λls, introduced in Section 4

as a natural generalization of the convergence on the Aleksandrov cube.

Concerning the context of our research, first we note that the topology Oλls
(gen-

erated by the convergence λls) and its dual Oλli
generate the sequential topology Oλs ,

The research has been supported by the Ministry of Education, Science and Technological
Research of Republic of Serbia under grant 174006.
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for the algebras B belonging to a wide class including Maharam algebras [11]. Sec-

ond, we mention some related results. If B is a complete Boolean algebra, let the

convergences λi : B
ω → P (B), for i ∈ {0, 1, 2, 3, 4}, be defined by

λi(x) =

{

{b4(x)} if bi(x) = b4(x),

∅ if bi(x) < b4(x),

where x = 〈xn〉 ∈ Bω, τx = {〈ň, xn〉 : n ∈ ω} is the corresponding B-name for

a subset of ω and

b0(x) = ‖τx is cofinite‖ = lim inf x,

b1(x) = ‖τx is old infinite‖,

b2(x) = ‖τx contains an old infinite subset‖,

b3(x) = ‖τx is infinite and non-splitting‖,

b4(x) = ‖τx is infinite‖ = lim supx.

Then, by [10] and [11], λs = λ0 and λls = λ̄2 = λ̄3 = λ̄4, where λ̄ is the closure of

a convergence λ under (L2). Also λ1 6 λ2 6 λ3 6 λ4 and these four convergences

generate the same topology, Oλls
. So we have the following diagram (λ∗ denotes the

closure of a convergence λ under (L3), see Section 2).

λ̄1

λls = λ̄2 = λ̄3 = λ̄4

λ3

λ1

limOλi
, i 6 4

λ̄
∗
2
= λ̄

∗
3
= λ̄

∗
4

λ̄
∗
1

λ4

λ2

λs = λ0

Now we mention some related results from [10] and [11]. The property that B does

not produce new reals by forcing is equivalent to each of the following conditions:

λ1 = λ2, λ1 = λ4, λ2 = λ3, λ2 = λ4, λ̄1 = λls, λ̄1 is a topological convergence.

The property that B does not produce splitting reals is equivalent to the equality

λ3 = λ4, which holds if the convergence λ̄1 is weakly topological.

Our notation is mainly standard. So, ω denotes the set of natural numbers, Y X

the set of all functions f : X → Y and ω↑ω the set of all strictly increasing functions
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from ω into ω. By |X | we denote the cardinality of the set X and, if κ is a cardinal,

then [X ]κ = {A ⊂ X : |A| = κ} and [X ]<κ = {A ⊂ X : |A| < κ}. By c we denote

the cardinality of the continuum. For subsets A and B of ω we write A ⊂∗ B if A\B

is a finite set and A  ∗ B denotes A ⊂∗ B and B 6⊂∗ A. The set S splits the set A

if the sets A ∩ S and A \ S are infinite. S ⊂ [ω]ω is called a splitting family if each

set A ∈ [ω]ω is split by some element of S and s is the minimal size of a splitting

family (the splitting number). A set P is a pseudointersection of a family T ⊂ [ω]ω

if P ⊂∗ T for each T ∈ T . A family T ⊂ [ω]ω is a tower if 〈T ,∗!〉 is a well-ordered

set and T has no pseudointersection. The tower number, t, is the minimal size of

a tower in [ω]ω. If 〈P,6〉 is a partial order, a subset D ⊂ P is called dense if for all

p ∈ P exists d ∈ D, d 6 p and D is called open if p 6 q ∈ D implies p ∈ D. The

distributivity number, h, is the minimal size of a family of dense open subsets of the

order 〈[ω]ω ,⊂〉 whose intersection is not dense. More information on invariants of

the continuum can be found in [18].

If B is a Boolean algebra and A ⊂ B let A↑ = {b ∈ B : ∃a ∈ A a 6 b}; instead of

{b}↑ we will write b↑. Clearly, A↑ =
⋃

a∈A

a↑ and we will say that a set A is upward

closed iff A = A↑. In a similar way we define A↓, b↓ and downward closed sets.

2. Topological preliminaries

A sequence in a set X is any function x : ω → X ; instead of x(n) we usually write

xn and also x = 〈xn : n ∈ ω〉. The constant sequence 〈a, a, a, . . .〉 is denoted by 〈a〉.

If f ∈ ω↑ω, the sequence y = x ◦ f is said to be a subsequence of the sequence x and

we write y ≺ x.

If 〈X,O〉 is a topological space, a point a ∈ X is said to be a limit point of

a sequence x ∈ Xω (we will write: x →O a) iff each neighborhood U of a contains

all but finitely many members of the sequence. A space 〈X,O〉 is called sequential

iff a set A ⊂ X is closed whenever it contains each limit of each sequence in A.

If X is a nonempty set, each mapping λ : Xω → P (X) is a convergence on X and

the mapping uλ : P (X) → P (X), defined by uλ(A) =
⋃

x∈Aω

λ(x), is the operator of

sequential closure determined by λ. A convergence λ satisfying |λ(x)| 6 1, for each

sequence x in X , is called a Hausdorff convergence. If λ1 is another convergence on

X , then we will write λ 6 λ1 iff λ(x) ⊂ λ1(x), for each sequence x ∈ Xω. Clearly, 6

is a partial ordering on the set Conv(X) = {λ : λ is a convergence on X}.

If 〈X,O〉 is a topological space, then the mapping limO : Xω → P (X) defined by

limO(x) = {a ∈ X : x →O a} is the convergence on X determined by the topology O

and for the operator λ = limO we have (see [5]):

(L1) ∀a ∈ X a ∈ λ(〈a〉);
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(L2) ∀x ∈ Xω ∀y ≺ x λ(x) ⊂ λ(y);

(L3) ∀x ∈ Xω ∀a ∈ X ((∀y ≺ x ∃z ≺ y a ∈ λ(z)) ⇒ a ∈ λ(x)).

We will use the following facts which mainly belong to the topological folklore.

Their proofs can be found in [10].

Fact 2.1. If O1 and O2 are topologies on a set X , then

(a) O1 ⊂ O2 implies limO2 6 limO1 ,

(b) if O1 and O2 are sequential topologies and limO1 = limO2 , then O1 = O2.

A convergence λ : Xω → P (X) is called a topological convergence iff there is a topol-

ogy O on X such that λ = limO. The following fact shows that each convergence has

a minimal topological extension and connects topological and convergence structures.

Fact 2.2. Let λ : Xω → P (X) be a convergence on a nonempty set X . Then

(a) there is a maximal topology Oλ on X satisfying λ 6 limOλ
;

(b) Oλ = {O ⊂ X : ∀x ∈ Xω (O ∩ λ(x) 6= ∅ ⇒ ∃n0 ∈ ω ∀n > n0 xn ∈ O)};

(c) 〈X,Oλ〉 is a sequential space;

(d) Oλ = {X \ F : F ⊂ X ∧ uλ(F ) = F}, if λ satisfies (L1) and (L2);

(e) limOλ
= min{λ′ ∈ Conv(X) : λ′ is topological and λ 6 λ′};

(f) OlimOλ
= Oλ;

(g) if λ1 : Xω → P (X) and λ1 6 λ, then Oλ ⊂ Oλ1 ;

(h) λ is a topological convergence iff λ = limOλ
.

If a convergence λ satisfies conditions (L1) and (L2), then the minimal closure of λ

under (L3) is described in the following statement.

Fact 2.3. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2). Then the

mapping λ∗ : Xω → P (X) given by λ∗(y) =
⋂

f∈ω↑ω

⋃

g∈ω↑ω

λ(y ◦ f ◦ g) is the minimal

convergence bigger than λ and satisfying (L1)–(L3). Hence λ∗ 6 limOλ
.

A convergence λ : Xω → P (X) will be called weakly topological iff it satisfies

conditions (L1) and (L2) and its (L3)-closure, λ∗, is a topological convergence.

Fact 2.4. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2).

(a) λ is weakly topological iff λ∗ = limOλ
, that is, iff for each x ∈ Xω and a ∈ X

we have: a ∈ limOλ
(x) ⇔ ∀y ≺ x ∃z ≺ y a ∈ λ(z);

(b) if λ is a Hausdorff convergence, then λ∗ is also a Hausdorff convergence and

λ∗ = limOλ
, that is, λ is a weakly topological convergence.

Fact 2.5. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2) and let

the mappings uα
λ : P (X) → P (X), α 6 ω1, be defined by recursion in the following

way: for A ⊂ X

⊲ u0
λ(A) = A,

⊲ uα+1
λ (A) = uλ(u

α
λ(A)) and

⊲ uγ
λ(A) =

⋃

α<γ

uα
λ(A), for a limit γ 6 ω1.

Then uω1

λ is the closure operator in the space 〈X,Oλ〉.
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3. The Cantor cube and the algebraic convergence

First we recall that if Xn, n ∈ ω, is a sequence of sets, then

lim inf
n∈ω

Xn =
⋃

k∈ω

⋂

n>k

Xn = {x : x ∈ Xn for all but finitely many n}

and

lim sup
n∈ω

Xn =
⋂

k∈ω

⋃

n>k

Xn = {x : x ∈ Xn for infinitely many n}.

Clearly we have:

Fact 3.1. Let Xn, n ∈ ω, be a sequence of sets. Then

(a) lim inf
n∈ω

Xn ⊂ lim sup
n∈ω

Xn;

(b) if Xn = X , for each n > k, then lim inf
n∈ω

Xn = lim sup
n∈ω

Xn = X .

We remind the reader that if κ is an infinite cardinal, then the Cantor cube of

weight κ, denoted by 〈2κ, τC〉, is the Tychonov product of κ many copies of the two-

point discrete space 2 = {0, 1}. We will identify the set 2κ with the power set P (κ)

using the bijection f : 2κ → P (κ) defined by f(x) = x−1[{1}].

Fact 3.2. Let 〈xn〉 be a sequence in 2κ and x ∈ 2κ. Then the following conditions

are equivalent:

(a) 〈xn〉 →τC x,

(b) ∀α ∈ κ ∃k ∈ ω ∀n > k xn(α) = x(α),

(c) lim inf
n∈ω

Xn = lim sup
n∈ω

Xn = X , where Xn = f(xn) and X = f(x).

The Cantor cube 〈2κ, τC〉 is a sequential space iff κ = ω.

P r o o f. (a) ⇔ (b) is true since the topology on the set 2 is discrete and the

convergence of sequences in Tychonov products is the pointwise convergence (see [5]).

(b) ⇒ (c). By (b), for each α ∈ κ there is k ∈ ω such that Xn∩{α} = X∩{α}, for

each n > k, which, by Fact 3.1 (b), implies that lim inf
n∈ω

Xn∩{α} = lim sup
n∈ω

Xn∩{α} =

X ∩ {α}. This holds for all α ∈ κ so (c) is true.

(c) ⇒ (b). Assuming (c), in order to prove (b) we take α ∈ κ. If α ∈ X ,

then, by (c), there is k ∈ ω such that for each n > k we have α ∈ Xn, that is

xn(α) = 1 = x(α). If α ∈ κ \X =
⋃

k∈ω

⋂

n>k

κ \Xn, then there is k ∈ ω such that for

each n > k we have α ∈ κ \Xn, that is xn(α) = 0 = x(α) and (b) is true.

The Cantor space 2ω is sequential, since it is metrizable (see [5]).

Let κ > ω and let A ⊂ 2κ be the family of characteristic functions of at most

countable subsets of κ. By (a) and since the limit superior of a sequence of countable

sets is countable, the set A is sequentially closed. But A is dense in 2κ and, hence,

not closed. Thus 〈2κ, τC〉 is not a sequential space. �
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Let the convergence λs on the power set P (κ) be defined by

λs(〈Xn〉) =

{

{X} if lim inf Xn = lim supXn = X,

∅ if lim inf Xn < lim supXn.

Fact 3.3. Let f : 2κ → P (κ) be the bijection given by f(x) = x−1[{1}]. Then

(a) τ
P (κ)
C = {f [O] : O ∈ τC} is a topology on the power set algebra P (κ);

(b) f : 〈2κ, τC〉 → 〈P (κ), τ
P (κ)
C 〉 is a homeomorphism;

(c) λs = lim
τ
P(κ)
C

= limOλs
, thus λs is a topological convergence;

(d) Oλs = τ
P (κ)
C iff κ = ω. If κ > ω, then τ

P (κ)
C  Oλs .

P r o o f. (a) and (b) are evident. Let us prove (c). By Fact 3.2, X ∈ λs(〈Xn〉)

iff 〈xn〉 →τC x, which is, by (b), equivalent to X ∈ lim
τ
P(κ)
C

(〈Xn〉). Now, the second

equality follows from Fact 2.2 (h). (d) follows from Fact 3.2 and Fact 2.2 (c). �

The convergence λs on power set algebras is generalized for an arbitrary complete

Boolean algebra B defining the algebraic convergence λs on B by

λs(〈xn〉) =

{

{x} if lim inf xn = lim supxn = x,

0 if lim inf xn < lim supxn,

where lim inf xn =
∨

k∈ω

∧

n>k

xn and lim supxn =
∧

k∈ω

∨

n>k

xn. By Fact 2.2, there is

maximal topology Oλs on B such that λs 6 limOλs
, called the sequential topology,

traditionally denoted by τs. It played a significant role in the solution of von Neu-

mann’s [14] and Maharam’s problem [13] presented by Talagrand [15], [16] (see also

papers of Balcar, G lówczyński and Jech [1]; Balcar, Jech and Pazák [2]; Balcar and

Jech [3]; Farah [6]; Todorčević [17] and Veličković [19]).

It is known that the convergence λs is weakly topological. Namely we have:

Fact 3.4. Let B be a complete Boolean algebra. Then

(a) λs is a Hausdorff convergence satisfying (L1) and (L2);

(b) λs is a weakly topological convergence.

P r o o f. Clearly, λs is a Hausdorff convergence and satisfies (L1). Since for each

x, y ∈ B, y ≺ x implies lim inf x 6 lim inf y 6 lim sup y 6 lim supx, it satisfies (L2).

(b) follows from (a) and Fact 2.4. �

By Fact 3.3 (c), on each power set algebra the convergence λs is topological. In

general, by Fact 2.2 (h) and Theorem 2 of [9] we have:
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Theorem 3.5. For each complete Boolean algebra B the following conditions are

equivalent:

(a) λs is a topological convergence;

(b) λs = limOλs
;

(c) the algebra B is (ω, 2)-distributive;

(d) forcing by B does not produce new reals.

If an algebra B is not (ω, 2)-distributive but

(h̄) ∀x ∈ Bω ∃y ≺ x ∀z ≺ y lim sup z = lim sup y,

then the convergence limOλs
is characterized in the following way (see [9]).

Theorem 3.6. If a complete Boolean algebra B satisfies condition (h̄), then for

each sequence x ∈ Bω and a ∈ B we have: a ∈ limOλs
(x) ⇔ ax = bx = a, where

ax =
∧

A∈[ω]ω

∨

B∈[A]ω

∧

n∈B

xn and bx =
∨

A∈[ω]ω

∧

B∈[A]ω

∨

n∈B

xn.

The implication “⇒” holds in each complete Boolean algebra.

We note that, by [9], condition (h̄) is related to the cellularity of complete Boolean

algebras: t-cc ⇒ (h̄) ⇒ s-cc. By [12], {κ ∈ Card : κ-cc ⇒ (h̄)} is either [0, h) or

[0, h] and {κ ∈ Card : (h̄) ⇒ κ-cc} = [s,∞).

4. The Aleksandrov cube and the convergences λls and λli

We remind the reader that the Aleksandrov cube of weight κ, here denoted by

〈2κ, τA〉, is the Tychonov product of κ-many copies of the two-point space 2 = {0, 1}

with the topology OA = {∅, {0}, {0, 1}}. It is an universal T0 space of weight κ

(see [5]).

Fact 4.1. (a) Let 〈xn〉 be a sequence in 2κ and x ∈ 2κ. Then 〈xn〉 →τA x iff

(4.1) lim sup
n∈ω

Xn ⊂ X,

where Xn = x−1
n [{1}], for n ∈ ω, and X = x−1[{1}].

(b) 〈2κ, τA〉 is a sequential space iff κ = ω.

P r o o f. (a) In the space 〈2,OA〉 the point 0 is isolated and the only neighbor-

hood of the point 1 is {0, 1} so, a sequence 〈an : n ∈ ω〉 converges to a point a iff

a = 1, or a = 0 and there is k ∈ ω such that an = 0, for all n > k. Now as in
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Section 3 we conclude that, in the space 〈2κ, τA〉, 〈xn〉 →τA x iff for each α < κ,

〈xn(α)〉 →OA
x(α), which is equivalent to

∀α < κ [x(α) = 1 ∨ (x(α) = 0 ∧ ∃k ∈ ω ∀n > k xn(α) = 0)],

which means that for each α < κ we have α ∈ X ∨ ¬∀k ∈ ω ∃n > k α ∈ Xn, that is,

α ∈ lim supXn ⇒ α ∈ X .

(b) (⇐) 〈2ω, τA〉 is a first countable and, consequently, a sequential space.

(⇒) Let κ > ω. The set S = {x ∈ 2κ : |x−1[{0}]| 6 ℵ0} is dense in the space

〈2κ, τA〉 and, hence, it is not closed. In order to show that S is sequentially closed we

take a sequence 〈xn : n ∈ ω〉 in S and show that limτA(〈xn〉) ⊂ S. The corresponding

sets Xn = x−1
n [{1}], n ∈ ω, are co-countable subsets of κ, thus Xn = κ \ Cn, where

Cn ∈ [κ]6ℵ0 and the set lim supXn = κ \
⋃

k∈ω

⋂

n>k

Cn is co-countable as well. By (a),

if x ∈ limτA(〈xn〉), then lim supXn ⊂ X , which means that X is a co-countable set

and, consequently, x ∈ S. �

Let the convergence λls on P (κ) be defined by

λls(〈Xn〉) = (lim supXn)↑.

Theorem 4.2. Let f : 2κ → P (κ) be the bijection given by f(x) = x−1[{1}].

Then

(a) τ
P (κ)
A = {f [O] : O ∈ τA} is a topology on P (κ);

(b) f : 〈2κ, τA〉 → 〈P (κ), τ
P (κ)
A 〉 is a homeomorphism;

(c) λls = lim
τ
P(κ)
A

= limOλls
and λls is a topological convergence;

(d) Oλls
= τ

P (κ)
A iff κ = ω. If κ > ω, then τ

P (κ)
A  Oλls

;

(e) Oλls
6⊂ τ

P (κ)
C , if κ > ω.

P r o o f. (a) and (b) are evident. (c) and (d) follow from Fact 4.1 and Fact 2.2 (h).

(e) As in Fact 4.1 we consider the set F = {κ \ C : C ∈ [κ]6ℵ0}, which is dense

in the space 〈P (κ), τ
P (κ)
C 〉 and, hence P (κ) \ F 6∈ τ

P (κ)
C . If 〈Xn〉 is a sequence

in F , where Xn = κ \ Cn, then lim supXn = κ \
⋃

k∈ω

⋂

n>k

Cn ∈ F and, clearly,

λls(〈Xn〉) = (lim supXn)↑ ⊂ F , thus uλls
(F ) = F . By (c), λls satisfies (L1) and

(L2), so, by Fact 2.2 (d), P (κ) \ F ∈ Oλls
. �

Now we generalize this for an arbitrary complete Boolean algebra B defining the

convergence λls by

λls(〈xn〉) = (lim supxn)↑

and Fact 2.2 provides the topology Oλls
on B. We will also consider the dual con-

vergence λli on B defined by λli(〈xn〉) = (lim inf xn)↓ and the corresponding topol-

ogy Oλli
.
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If λ1 and λ2 are convergences, by λ1 ∩ λ2 we will denote the convergence defined

by (λ1 ∩ λ2)(x) = λ1(x) ∩ λ2(x). Similarly to Fact 3.4 we have:

Theorem 4.3. Let B be a complete Boolean algebra. Then

(a) λls and λli are non-Hausdorff convergences satisfying (L1) and (L2);

(b) λs = λls ∩ λli and, consequently, λs 6 λls, λli;

(c) Oλls
,Oλli

⊂ Oλs ;

(d) λ∗
ls 6 limOλls

and λ∗
li 6 limOλli

;

(e) λ∗
s = λ∗

ls ∩ λ∗
li and, consequently, λ

∗
s 6 λ∗

ls, λ
∗
li.

P r o o f. (a) Since a ∈ a↑ = (lim sup〈a〉)↑ = λls(〈a〉), for each a ∈ B, λls

satisfies (L1) and it is not Hausdorff because 0, 1 ∈ λls(〈0〉). For a proof of (L2) note

that y ≺ x implies lim sup y 6 lim supx, so we have (lim sup x)↑ ⊂ (lim sup y)↑, that

is, λls(x) ⊂ λls(y).

(b) If a ∈ λs(x), then a = lim supx ∈ (lim supx)↑ = λls(x) and, similarly, a ∈

λli(x). Conversely, if a ∈ λls(x)∩λli(x), then lim supx 6 a 6 lim inf x, which implies

lim supx = lim inf x = a, that is, a ∈ λs(x).

(c) follows from (b) and Fact 2.2 (g).

(d) follows from Fact 2.3.

(e) By (b) and by the minimality of λ∗ (see Fact 2.3) we have λ∗
s 6 λ∗

ls, λ
∗
li. So,

it remains to be proved that λ∗
ls ∩ λ∗

li 6 λ∗
s . Let x ∈ Bω and a ∈ λ∗

ls(x) ∩ λ∗
li(x).

If y ≺ x, then there is z ≺ y such that a > lim sup z and there is t ≺ z such that

a 6 lim inf t. But then lim sup t 6 lim sup z 6 a 6 lim inf t, which implies a ∈ λs(x).

Thus for each y ≺ x there is t ≺ y such that a ∈ λs(x), that is a ∈ λ∗
s (x). �

By the previous theorem and Fact 3.4, the relations between the convergences

considered in this paper are presented in the following diagram.

λs

λli

λ
∗

li

limOλ
li

λls

λ
∗

ls

limOλ
ls

limOλs
λ
∗
s
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In the sequel we will use the following characterization, where the families of

closed sets corresponding to the topologies Oλls
and Oλli

are denoted by Fλls
and

Fλli
, respectively.

Theorem 4.4. Let B be a complete Boolean algebra. Then:

(I) For a set F ⊂ B the following conditions are equivalent:

(a) F ∈ Fλls
;

(b) F is upward closed and lim supx ∈ F , for each sequence x ∈ Fω;

(c) F is upward closed and
∧

n∈ω

xn ∈ F , for each decreasing x ∈ Fω.

(II) For a set F ⊂ B the following conditions are equivalent:

(a) F ∈ Fλli
;

(b) F is downward closed and lim inf x ∈ F , for each sequence x ∈ Fω;

(c) F is downward closed and
∨

n∈ω

xn ∈ F , for each increasing x ∈ Fω.

(III) The mapping h : 〈B,Oλls
〉 → 〈B,Oλli

〉 given by h(b) = b′, for each b ∈ B, is

a homeomorphism.

P r o o f. We prove (I). The proof of (II) is dual.

(a) ⇒ (b). Let X \ F ∈ Oλls
. Then, by Theorems 4.3 and Fact 2.2 (d) we have

F = uλls
(F ) =

⋃

x∈Fω

(lim sup x)↑ and, hence, F is upward closed. Also, if x ∈ Fω,

then lim supx ∈ (lim supx)↑ ⊂ F .

(b) ⇒ (c). If x ∈ Fω is a decreasing sequence,
∧

n∈ω

xn = lim supx ∈ F .

(c) ⇒ (a). Assuming (c), by Fact 2.2 (d) we show that uλls
(F ) = F . If b ∈ uλls

(F ),

then there is x ∈ Fω such that b > lim supx. Since the set F is upward closed and

xn ∈ F , for k ∈ ω we have yk = b ∨
∨

n>k

xn ∈ F and, clearly, y = 〈yk : k ∈ ω〉

is a decreasing sequence. So, F ∋
∧

k∈ω

yk =
∧

k∈ω

(

b ∨
∨

n>k

xn

)

= b ∨
∧

k∈ω

∨

n>k

xn =

b ∨ lim supx = b.

(III) h is a bijection and for a proof of its continuity we take F ∈ Fλli
and show

that h−1[F ] = {b′ : b ∈ F} ∈ Fλls
. If a > b′ ∈ h−1[F ], then a′ 6 b ∈ F and, by

(II), a′ ∈ F , which implies a ∈ h−1[F ]. Thus the set h−1[F ] is upward closed. Let

〈xn〉 be a decreasing sequence in h−1[F ]. Then 〈x′
n〉 is an increasing sequence in F

and, by (II) again,
∨

n∈ω

x′
n =

(

∧

n∈ω

xn

)′

∈ F , which implies
∧

n∈ω

xn ∈ h−1[F ]. By (I),

h−1[F ] ∈ Fλls
. The proof that h is closed is similar. �
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5. The algebras with topological λls

In this section we prove the following characterization of complete Boolean algebras

on which the convergences λls and λli are topological.

Theorem 5.1. For each complete Boolean algebra B the following conditions are

equivalent:

(a) λls is a topological convergence;

(b) λli is a topological convergence;

(c) B is an (ω, 2)-distributive algebra;

(d) forcing by B does not produce new reals.

The following three lemmas will be used in our proof.

Lemma 5.2. Let B be a complete Boolean algebra. Then

(a) for each a ∈ B the function fa : 〈B,Oλls
〉 → 〈B,Oλls

〉 defined by fa(x) = x ∧ a

is continuous;

(b) limOλls
6= λls iff there is a sequence x in B such that 0 ∈ limOλls

(x) \ λls(x);

(c) if x, y ∈ Bω and xn 6 yn, for each n ∈ ω, then limOλls
(y) ⊂ limOλls

(x).

P r o o f. (a) By Theorem 4.4 we show that for a closed set F ⊂ B the set

f−1
a [F ] = {x ∈ B : x ∧ a ∈ F} is upward closed and contains the infimum of each

decreasing sequence in f−1
a [F ]. First, if x1 > x ∈ f−1

a [F ], then x1 ∧ a > x ∧ a ∈ F

and, since F is upward closed, x1 ∧ a ∈ F , that is, x1 ∈ f−1
a [F ]. Second, if 〈xn〉 is

a decreasing sequence in f−1
a [F ], then 〈xn ∧ a〉 is a decreasing sequence in F and,

since F is closed,
∧

n∈ω

xn ∧ a ∈ F , thus
∧

n∈ω

xn ∈ f−1
a [F ].

(b) Let y ∈ Bω and b ∈ limOλls
(y) \ λls(y). Then lim sup y 66 b and, hence,

c = lim sup y ∧ b′ > 0. Let x = 〈yn ∧ c : n ∈ ω〉. Since c 6 lim sup y we have

c =
∧

k∈ω

∨

n>k

yn ∧ c = lim supx, which implies 0 6∈ λls(x). Since b ∈ limOλls
(y) and,

by (a), the function fc : B → B defined by fc(t) = t ∧ c is continuous, we have

0 = b ∧ c = fc(b) ∈ limOλls
(〈fc(yn)〉) = limOλls

(x).

(c) Let a ∈ limOλls
(y) and a ∈ O ∈ Oλls

. Then there is n0 ∈ ω such that for each

n > n0 we have yn ∈ O, thus, since by Theorem 4.4 the set O is downward closed,

xn ∈ O, for n > n0. So a ∈ limOλls
(x). �

If x ∈ Bω, then τx = {〈ň, xn〉 : n ∈ ω} is the corresponding B-name for a subset

of ω and, by Lemmas 2 and 6 of [9],

lim inf x = ‖ω̌ ⊂∗ τx‖;

lim supx = ‖|τx| = ω̌‖;
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ax = ‖∀A ∈ (([ω]ω)V )ˇ∃B ∈ (([A]ω)V )ˇB ⊂∗ τx‖;

bx = ‖∃A ∈ (([ω]ω)V )ˇ∀B ∈ (([A]ω)V )ˇ|τx ∩B| = ω̌‖.

Lemma 5.3. Let B be a complete Boolean algebra and x a sequence in B. Then

(a) lim inf x 6 ax 6 bx 6 lim supx;

(b) if B is (ω, 2)-distributive, then ax = lim inf x and bx = lim supx;

(c) bx =
∨

y≺x

∧

z≺y

∨

m∈ω

zm.

P r o o f. (a) This is Lemma 7 of [9].

(b) Let B be (ω, 2)-distributive. By (a), it is sufficient to show that lim supx 6 bx,

that is 1  |τx| = ω̌ ⇒ ∃A ∈ (([ω]ω)V )ˇ∀B ∈ (([A]ω)V )ˇ|τx ∩ B| = ω̌. Let G be

a B-generic filter over V and let |(τx)G| = ω. Then, by the (ω, 2)-distributivity we

have (τx)G ∈ ([ω]ω)V and A = (τx)G is as required. Thus bx = lim supx. The proof

of ax = lim inf x is similar.

(c) Clearly we have

∨

y≺x

∧

z≺y

∨

m∈ω

zm =
∨

f∈ω↑ω

∧

z≺x◦f

∨

m∈ω

zm =
∨

f∈ω↑ω

∧

g∈ω↑ω

∨

m∈ω

xf(g(m))

=
∨

f∈ω↑ω

∧

g∈ω↑ω

∨

n∈f [g[ω]]

xn

and we prove that in each generic extension VB[G] the conditions

(5.1) ∃A ∈ ([ω]ω)V ∀B ∈ ([A]ω)V B ∩ (τx)G 6= ∅

and

(5.2) ∃f ∈ (ω↑ω)V ∀g ∈ (ω↑ω)V f [g[ω]] ∩ (τx)G 6= ∅

are equivalent. Let (5.1) hold and let fA be the increasing enumeration of the set A.

Then fA ∈ (ω↑ω)V and for any g ∈ (ω↑ω)V we have fA[g[ω]] ∈ ([A]ω)V , thus, by the

assumption, fA[g[ω]] ∩ (τx)G 6= ∅.

Let (5.2) hold. Then A = f [ω] ∈ ([ω]ω)V and, if B ∈ ([A]ω)V , then f−1[B] ∈

([ω]ω)V and gf−1[B] ∈ (ω↑ω)V , where gf−1[B] is the increasing enumeration of

the set f−1[B]. By the assumption we have f [gf−1[B][ω]] ∩ (τx)G 6= ∅ and, since

f [gf−1[B][ω]] = f [f−1[B]] = B (because B ⊂ f [ω]), we have B ∩ (τx)G 6= ∅. �

A sequence x in a complete Boolean algebra B will be called lim sup-stable (or

lim inf-stable) iff lim sup y = lim supx (or lim inf y = lim inf x), for each subsequence

y of x.
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Lemma 5.4. Let x = 〈xn : n ∈ ω〉 be a sequence in a complete Boolean algebra B.

(a) If x is a lim sup-stable sequence, then in the space 〈B,Oλls
〉 we have

(5.3) {xn : n ∈ ω} = (lim supx)↑ ∪
⋃

n∈ω

xn↑.

(b) If x is a lim inf-stable sequence, then in the space 〈B,Oλli
〉 we have

(5.4) {xn : n ∈ ω} = (lim inf x)↓ ∪
⋃

n∈ω

xn↓.

P r o o f. We prove (a) and the proof of (b) is dual. Let X = {xn : n ∈ ω}. First

we prove that

(5.5) uλls
(X) = (lim sup x)↑ ∪

⋃

n∈ω

xn↑.

Since (lim supx)↑ = λls(〈xn : n ∈ ω〉) and xn↑ = λls(〈xn, xn, . . .〉), for each n ∈ ω,

the inclusion “⊃” in (5.5) is proved. By Theorems 4.3 (a) and Fact 2.5 we have

X = uω1

λls
(X) ⊃ uλls

(X) and the inclusion “⊃” in (5.3) is true as well.

In order to prove the inclusion “⊂” in (5.5) we take y ∈ Xω. If y has a constant sub-

sequence, say 〈xn, xn, . . .〉, then xn 6 lim sup y and, hence, λls(y) = (lim sup y)↑ ⊂

xn↑ and we are done. Otherwise, by Ramsey’s Theorem, there is H ∈ [ω]ω such that

y ↾ H is an injection. Let the function f : H → ω be defined by f(k) = min{n ∈

ω : yk = xn}. Then for different k1, k2 ∈ H we have xf(k1) = yk1 6= yk2 = xf(k2)

and, hence, f(k1) 6= f(k2). Thus f is an injection, so, by Ramsey’s Theorem again

and since ω is a well-ordering, there is H1 ∈ [H ]ω such that f ↾ H1 is an increas-

ing function. Now we have y ≻ 〈yk : k ∈ H1〉 = 〈xf(k) : k ∈ H1〉 ≺ x and, since

x is a lim sup-stable sequence, lim sup y > lim sup〈yk : k ∈ H1〉 = lim supx, which

implies λls(y) = (lim sup y)↑ ⊂ (lim supx)↑ and (5.5) is proved.

Now, we prove that

(5.6) uλls
(X) = uλls

(uλls
(X)).

The inclusion “⊂” holds, since λls satisfies (L1). In order to prove “⊃”, for y ∈

uλls
(X)ω, we show that λls(y) ⊂ uλls

(X). By (5.5) we have

∀k ∈ ω (yk > lim supx ∨ ∃n ∈ ω yk > xn).

If there exists G ∈ [ω]ω such that yk > lim supx, for each k ∈ G, then lim supx 6

lim sup〈yk : k ∈ G〉 6 lim sup y, which implies λls(y) = (lim sup y)↑ ⊂ (lim supx)↑

⊂ uλls
(X).
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Otherwise, there is k0 ∈ ω such that for all k > k0 there is n ∈ ω such that

yk > xn. Let f : ω \ k0 → ω be defined by f(k) = min{n ∈ ω : xn 6 yk}. Then

xf(k) 6 yk, for k ∈ ω \ k0.

If there are H0 ∈ [ω \ k0]ω and n ∈ ω such that f(k) = n, for each k ∈ H0, then

lim sup y > lim sup〈yk : k ∈ H0〉 > xn, which implies λls(y) = (lim sup y)↑ ⊂ xn↑ ⊂

uλls
(X). Otherwise, by Ramsey’s Theorem, there is H1 ∈ [ω \ k0]ω such that f ↾ H1

is an injection and, by Ramsey’s Theorem again, there exists H2 ∈ [H1]
ω such that

f ↾ H2 is an increasing mapping. Now 〈yk : k ∈ H2〉 ≺ y, which implies

(5.7) lim sup〈yk : k ∈ H2〉 6 lim sup y

and 〈xf(k) : k ∈ H2〉 ≺ x, which, since x is a lim sup-stable sequence, implies

(5.8) lim sup〈xf(k) : k ∈ H2〉 = lim supx.

Since xf(k) 6 yk we have lim sup〈xf(k) : k ∈ H2〉 6 lim sup〈yk : k ∈ H2〉 and, by

(5.7) and (5.8), lim supx 6 lim sup y, so λls(y) ⊂ uλls
(X) again.

Since the convergence λls satisfies (L1) and (L2), by Fact 2.5 we have X = uω1

λls
(X)

and (5.3) follows from (5.5) and (5.6). �

P r o o f of Theorem 5.1. (c) ⇔ (d) is a well known fact (see [7]).

(a) ⇔ (b). Assuming that λls = limOλls
we prove that λli = limOλli

, that is,

limOλli
(x) ⊂ λli(x), for each sequence x in B. So, if a ∈ limOλli

(x), then, by Theo-

rem 4.4 (III), we have a′ ∈ limOλls
(〈x′

n〉) = λls(〈x
′
n〉), that is, a′ > lim supx′

n, which

implies a 6 lim inf xn and, hence, a ∈ λli(x). The proof of the converse is similar.

(a) ⇒ (c). If λls is a topological convergence, then λli is topological as well. By

Theorem 4.3 (c) we have Oλls
,Oλli

⊂ Oλs , and, by Fact 2.1, limOλs
6 limOλls

, limOλli

so, since λls and λli are topological, limOλs
6 λls, λli, which, by Theorem 4.3 (b),

implies limOλs
6 λls ∩λli = λs 6 limOλs

. So, λs = limOλs
, that is, λs is a topological

convergence and, by Theorem 3.5, the algebra B is (ω, 2)-distributive.

(c) ⇒ (a). Suppose that the algebra B is (ω, 2)-distributive and that λls is

not a topological convergence. Then, by Lemma 5.2 (b), there exists a sequence

x in B such that 0 ∈ limOλls
(x) and 0 6∈ λls(x) = (lim sup x)↑, which implies

lim supx = b > 0. By Lemma 5.3 (b) and (c) we have bx = b and
∨

y≺x

∧

z≺y

∨

n∈ω

zn = b.

Consequently, there exists y ≺ x and c ∈ B+ such that
∧

z≺y

∨

n∈ω

zn = c, which implies

(5.9) ∀z ≺ y
∨

n∈ω

zn > c.

Claim 1. 〈yn ∧ c : n ∈ ω〉 is a lim sup-stable sequence.
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P r o o f of Claim 1. First, by (5.9) and since 〈yn : n > k〉 is a subsequence

of y, we have lim sup〈yn ∧ c : n ∈ ω〉 =
∧

k∈ω

(

∨

n>k

yn

)

∧ c =
∧

k∈ω

c = c. Now we

prove the same for an arbitrary subsequence 〈yf(k) ∧ c : k ∈ ω〉 of 〈yn ∧ c : n ∈ ω〉,

where f ∈ ω↑ω. Clearly, z = 〈yf(k) : k ∈ ω〉 is a subsequence of y and for each

l ∈ ω we have 〈yf(k) : k > l〉 ≺ y, which, by (5.9), implies
∨

k>l

yf(k) > c. So,

lim sup〈yf(k) ∧ c : k ∈ ω〉 =
∧

l∈ω

∨

k>l

yf(k) ∧ c =
∧

l∈ω

(

∨

k>l

yf(k)

)

∧ c =
∧

l∈ω

c = c. Claim 1

is proved. �

Claim 2. The set M = {n ∈ ω : yn ∧ c = 0} is finite.

P r o o f of Claim 2. Suppose that M ∈ [ω]ω. Then 〈yn ∧ c : n ∈ M〉 is a subse-

quence of the sequence 〈yn ∧ c : n ∈ ω〉 and, clearly, lim sup〈yn ∧ c : n ∈ M〉 = 0 < c,

which is impossible by Claim 1. Claim 2 is proved.

By Claim 2, without loss of generality, we suppose that yn∧ c > 0, for each n ∈ ω.

By Theorem 5.4 we have {yn ∧ c : n ∈ ω} = c↑ ∪
⋃

n∈ω

(yn ∧ c)↑ and this set is closed

in the space 〈B,Oλls
〉, does not contain 0, but contains each element of the sequence

〈yn ∧ c : n ∈ ω〉. This implies 0 6∈ limOλls
〈yn ∧ c〉.

On the other hand, since y ≺ x and 0 ∈ limOλls
(x), by (L2) we have 0 ∈ limOλls

(y).

Since yn ∧ c 6 yn, for each n ∈ ω, using Lemma 5.2 (c) we have limOλls
(y) ⊂

limOλls
〈yn ∧ c〉 and, hence, 0 ∈ limOλls

〈yn ∧ c〉, which is a contradiction. �

6. The algebras with weakly topological λls

By Theorem 5.1, if a complete Boolean algebra is not (ω, 2)-distributive, the con-

vergences λls and λli are not topological. Now we show that they are weakly topolog-

ical in algebras satisfying condition (h̄). The reader will notice that if in condition

(h̄) we replace “lim sup” by “lim inf”, we obtain an equivalent condition, because

(lim supxn)
′ = lim inf x′

n, for each sequence x in B.

Theorem 6.1. If B is a complete Boolean algebra satisfying condition (h̄), then

λls and λli are weakly topological convergences.

P r o o f. We prove the statement for λls. The proof for λli is dual. We show

that for each sequence x in B and each a ∈ B we have a ∈ limOλls
x ⇔ ∀y ≺ x

∃z ≺ y lim sup z 6 a. The implication “⇐” is Theorem 4.3 (d). In order to prove

“⇒” suppose that a ∈ limOλls
x, y ≺ x and lim sup z 66 a, for each subsequence z ≺ y.

By (h̄), there is a lim sup-stable sequence z ≺ y. Then the set K = {n ∈ ω : zn 6 a}
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is finite, since otherwise we would have lim sup〈zn : n ∈ K〉 6 a. Thus, without loss

of generality, we can suppose that zn 66 a for each n ∈ ω. By Lemma 5.4 we have

{zn : n ∈ ω} = (lim sup z)↑ ∪
⋃

n∈ω

zn↑.

Thus a ∈ O = B \ {zn : n ∈ ω} ∈ Oλls
and, since O ∩ {zn : n ∈ ω} = ∅, we have

a 6∈ limOλls
z, which is a contradiction, because z ≺ x and a ∈ limOλls

x. �

Example 6.2. If B is a ccc complete Boolean algebra such that forcing by B

produces new reals, then, by Fact 3.4 and Theorems 3.5, 5.1 and 6.1, the convergences

λs, λls and λli are weakly topological, but not topological. In particular this holds for

the Cohen algebra Borel(2ω)/M and random algebra Borel(2ω)/Z, where M and Z

are the σ-ideals of meager and measure-zero Borel sets, respectively.

In the sequel, using the following lemma, we show that on complete Boolean

algebras belonging to a large class the convergence λls is not weakly topological.

Lemma 6.3. Let B be a complete Boolean algebra, x = 〈xn : n ∈ ω〉 a sequence

in B and τx = {〈ň, xn〉 : n ∈ ω} the corresponding B-name for a real. Then:

(a) If A is an infinite subset of ω and fA : ω → A is the corresponding increasing

bijection, then ‖|τx ∩ Ǎ| = ω̌‖ = lim supx ◦ fA.

(b) The following conditions are equivalent:

(i) ∀f ∈ ω↑ω ∃g ∈ ω↑ω lim supx ◦ f ◦ g = 0;

(ii) ∀y ≺ x ∃z ≺ y lim sup z = 0;

(iii) ∀A ∈ [ω]ω ∃B ∈ [A]ω ‖|τx ∩ B̌| = ω̌‖ = 0.

P r o o f. (a) Since A = {fA(n) : n ∈ ω} and fA is a bijection, lim supx ◦ fA =
∧

k∈ω

∨

n>k

xfA(n) = ‖∀k ∈ ω̌ ∃n > k fA(n) ∈ τx‖ = ‖|τx ∩ Ǎ| = ω̌‖.

(b) The equivalence of (i) and (ii) is obvious.

(i) ⇒ (iii) Let A ∈ [ω]ω. By (i), there is g ∈ ω↑ω such that lim supx ◦ fA ◦ g = 0.

Clearly B = fA[g[ω]] ∈ [A]ω and fB = fA ◦ g, so, by (a), ‖|τx ∩ B̌| = ω̌‖ =

lim supx ◦ fA ◦ g = 0.

(iii) ⇒ (i) Let f ∈ ω↑ω and A = f [ω]. By (iii), there is B ∈ [A]ω such that

‖|τx ∩ B̌| = ω̌‖ = 0. Since f−1[B] ∈ [ω]ω, there exists an increasing bijection

g : ω → f−1[B]. From B ⊂ f [ω] it follows that f [g[ω]] = f [f−1[ω]] = B. So, by (a),

lim supx ◦ f ◦ g = ‖|τx ∩ f [g[ω]]ˇ| = ω̌‖ = 0 and (i) is proved. �

We remind the reader that a set T ⊂ [ω]ω is called a base matrix tree iff 〈T , ∗⊃〉

is a tree of height h and T is a dense set in the pre-order 〈[ω]ω,⊂∗〉. By a theorem

of Balcar, Pelant and Simon (see [4]), such a tree always exists. Clearly the levels of

534



a base matrix tree T are maximal almost disjoint families and maximal chains in T

are towers.

Theorem 6.4. If B is a complete Boolean algebra satisfying 1 B (hV )ˇ< t and

cc(B) > 2h, then λls is not a weakly topological convergence on B.

P r o o f. Let T be a base matrix tree and Br(T ) the set of all maximal branches

of T . Since the levels of T are of size 6 c and the height of T is h, for κ = |Br(T )|

we have κ 6 ch = 2h and we take an enumeration Br(T ) = {Tα : α < κ}. Since

1  (hV )ˇ < t, for each α < κ we have 1  |Ťα| < t and, consequently, 1  ∃X ∈

[ω̌]ω̌ ∀B ∈ Ťα X ⊂∗ B, so, by the Maximum Principle (see [8], page 226) there is

a name σα ∈ V B such that

(6.1) 1  σα ∈ [ω̌]ω̌ ∧ ∀B ∈ Tα σα ⊂∗ B.

Let {bα : α < κ} be a maximal antichain in B. By the Mixing Lemma (see [8],

page 226) there is a name τ ∈ V B such that

(6.2) ∀α < κ bα  τ = σα,

and, clearly, 1  τ ∈ [ω̌]ω̌. Let us define xn = ‖ň ∈ τ‖, n ∈ ω. Then for the

corresponding name τx = {〈ň, xn〉 : n ∈ ω} we have

(6.3) 1  τ = τx.

Claim 1. 0 6∈ λ∗
ls(x).

P r o o f of Claim 1. We prove that ¬∀y ≺ x ∃z ≺ y lim sup z = 0, that is, by

Lemma 6.3 (b), ∃A ∈ [ω]ω ∀B ∈ [A]ω‖|τx ∩ B̌| = ω̌‖ > 0. In fact, we show more:

(6.4) ∀B ∈ [ω]ω ‖|τx ∩ B̌| = ω̌‖ > 0.

Let B ∈ [ω]ω. Since T is a dense subset of 〈[ω]ω ,⊂∗〉, there is C ∈ T such that

C ⊂∗ B. Let Tα be a branch in T such that C ∈ Tα. Then, by (6.2) and (6.3) we

have bα  τx = σα, and by (6.1) 1  σα ⊂∗ C, so bα 6 ‖|τx ∩ B̌| = ω̌‖.

Claim 2. 0 ∈ limOλls
(x).

P r o o f of Claim 2. On the contrary, suppose that there are F ∈ Fλls
and

A ∈ [ω]ω such that 0 6∈ F and {xn : n ∈ A} ⊂ F . Since T is dense in 〈[ω]ω,⊂∗〉,

there is C ∈ T such that C ⊂∗ A and, clearly, there is α < κ such that C ∈ Tα. Tα

is a tower of type λ 6 h, so Tα = {Bξ : ξ < λ}, where Bζ (
∗ Bξ, for ξ < ζ < λ. Let

C = Bξ0 and, for n ∈ ω, let

Dn = Bξ0+n \Bξ0+n+1.
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By Lemma 6.3 (a), for each n ∈ ω we have ‖|τx ∩ Ďn| = ω̌‖ = lim supx ◦ fDn
. Since

Dn ⊂∗ A, almost all members of the sequence x ◦ fDn
are elements of F and, by

Theorem 4.4 (I), ‖|τx∩Ďn| = ω̌‖ ∈ F . So, by the same theorem, lim sup ‖|τx∩Ďn| =

ω̌‖ ∈ F . Since lim sup ‖|τx ∩ Ďn| = ω̌‖ = ‖|τx ∩ Ďn| = ω̌ for infinitely many n ∈ ω‖,

we will obtain a contradiction when we prove that

(6.5) ‖|τx ∩ Ďn| = ω̌ for infinitely many n ∈ ω‖ = 0.

Let G be a B-generic filter over V . Then there exists β < κ such that bβ ∈ G and,

by (6.1), (6.2), and (6.3),

(6.6) (τx)G ⊂∗ B, for each B ∈ Tβ.

First, if β = α, then, by (6.6), |(τx)G ∩Dn| < ω, for each n ∈ ω.

Second, if β 6= α, we have two cases.

Case 1. ∃E ∈ Tβ ∀n ∈ ω E ⊂∗ Bξ0+n. Then (τx)G ⊂∗ E and for each n ∈ ω we

have |(τx)G ∩Dn| < ω.

Case 2. ∀E ∈ Tβ ∃n ∈ ω E 6⊂∗ Bξ0+n. Then, since T is a tree, there is the

⊂∗-maximum of the set Tβ \ Tα, say E′ and, by the assumption, there is n0 ∈ ω

such that Bξ0+n0 ⊂∗ E′ or |Bξ0+n0 ∩ E′| < ω. Since E′ 6∈ Tα, Bξ0+n0 ⊂∗ E′ is

impossible, so |Bξ0+n0 ∩ E′| < ω and, hence, |Bξ0+n ∩ E′| < ω, for each n > n0.

Since (τx)G ⊂∗ E′ and Dn ⊂ Bξ0+n, we have |(τx)G ∩Dn| < ω, for all n > n0.

Thus |(τx)G ∩Dn| < ω, for all but finitely many n ∈ ω and (6.5) is true. �

The following example shows that there are very simple Boolean algebras such

that the question “Is the convergence λls on B weakly topological?” does not have

an answer in ZFC.

Example 6.5. The statement “The convergence λls on the collapsing algebra

B = ro(<ωω2) is weakly topological” is independent of ZFC. Since ω<ω
2 = ω2, the

algebra B is ω3-cc and collapses ω2 to ω in each generic extension.

If in the ground model V we have 2ω = ω1 and 2ω1 = ω2 (in particular, if V |=

GCH) then in V we have h = ω1, cc(B) = ω3 > ω2 = 2h and 1 B |(hV )ˇ| = ω̌. Thus,

by Theorem 6.4, the convergence λls on B is not weakly topological.

On the other hand, if in V we have t > ω3 (in particular, if V |= MA + c > ω3),

then B is t-cc and, hence, satisfies condition (h̄) which, by Theorem 6.1, implies that

the convergence λls on B is weakly topological.
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