The non-imprisonment conditions on spacetimes are studied. It is proved that
the non-partial imprisonment property implies the distinction property.
Moreover, it is proved that feeble distinction, a property which stays between
weak distinction and causality, implies non-total imprisonment. As a result the
non-imprisonment conditions can be included in the causal ladder of spacetimes.
Finally, totally imprisoned causal curves are studied in detail, and results
concerning the existence and properties of minimal invariant sets are obtained.Comment: 12 pages, 2 figures. v2: improved results on totally imprisoned
curves, a figure changed, some misprints fixe