research

On chains in HH-closed topological pospaces

Abstract

We study chains in an HH-closed topological partially ordered space. We give sufficient conditions for a maximal chain LL in an HH-closed topological partially ordered space such that LL contains a maximal (minimal) element. Also we give sufficient conditions for a linearly ordered topological partially ordered space to be HH-closed. We prove that any HH-closed topological semilattice contains a zero. We show that a linearly ordered HH-closed topological semilattice is an HH-closed topological pospace and show that in the general case this is not true. We construct an example an HH-closed topological pospace with a non-HH-closed maximal chain and give sufficient conditions that a maximal chain of an HH-closed topological pospace is an HH-closed topological pospace.Comment: We have rewritten and substantially expanded the manuscrip

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019