76 research outputs found
Pediatric ADHD symptom burden relates to distinct neural activity across executive function domains
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood disorder marked by inattention and/or hyperactivity symptoms. ADHD may also relate to impaired executive function (EF), but is often studied in a single EF task per sample. The current study addresses the question of unique vs. overlapping relations in brain activity across multiple EF tasks and ADHD symptom burden. Three in-scanner tasks drawn from distinct EF domains (cognitive flexibility, working memory, and inhibition) were collected from children with and without an ADHD diagnosis (N = 63). Whole-brain activity and 11 regions of interest were correlated with parent reports of inattention and hyperactivity symptoms. Across the three EF domains, brain activity related to ADHD symptom burden, but the direction and location of these associations differed across tasks. Overall, activity in sensory and default mode network regions related to ADHD, and these relations did not consistently overlap across EF domains. We observed both distinct and overlapping patterns for inattention and hyperactivity symptoms. By studying multiple EF tasks in the same sample, we identified a heterogenous neural profile related to attention symptom burden in children. Our results inform ADHD characterization and treatment and explain some of the variable brain results related to EF and ADHD reported in the literature
Recommended from our members
Hippocampal volume varies with educational attainment across the life-span
Socioeconomic disparities—and particularly differences in educational attainment—are associated with remarkable differences in cognition and behavior across the life-span. Decreased educational attainment has been linked to increased exposure to life stressors, which in turn have been associated with structural differences in the hippocampus and the amygdala. However, the degree to which educational attainment is directly associated with anatomical differences in these structures remains unclear. Recent studies in children have found socioeconomic differences in regional brain volume in the hippocampus and amygdala across childhood and adolescence. Here we expand on this work, by investigating whether disparities in hippocampal and amygdala volume persist across the life-span. In a sample of 275 individuals from the BRAINnet Foundation database ranging in age from 17 to 87, we found that socioeconomic status (SES), as operationalized by years of educational attainment, moderates the effect of age on hippocampal volume. Specifically, hippocampal volume tended to markedly decrease with age among less educated individuals, whereas age-related reductions in hippocampal volume were less pronounced among more highly educated individuals. No such effects were found for amygdala volume. Possible mechanisms by which education may buffer age-related effects on hippocampal volume are discussed
A randomized double-blind placebo-controlled trial to investigate the effects of nasal calcitonin on bone microarchitecture measured by high-resolution peripheral quantitative computerized tomography in postmenopausal women — Study protocol
<p>Abstract</p> <p>Background</p> <p>Bone microarchitecture is a significant determinant of bone strength. So far, the assessment of bone microarchitecture has required bone biopsies, limiting its utilization in clinical practice to one single skeletal site. With the advance of high-resolution imaging techniques, non-invasive in vivo measurement of bone microarchitecture has recently become possible. This provides an opportunity to efficiently assess the effects of anti-osteoporotic therapies on bone microarchitecture. We therefore designed a protocol to investigate the effects of nasal salmon calcitonin, an inhibitor of osteoclast activity, on bone microarchitecture in postmenopausal women, comparing weight bearing and non-weight bearing skeletal sites.</p> <p>Methods</p> <p>One hundred postmenopausal women will be included in a randomized, placebo-controlled, double-blind trial comparing the effect of nasal salmon calcitonin (200 UI/day) to placebo over two years. Bone microarchitecture at the distal radius and distal tibia will be determined yearly by high-resolution peripheral quantitative computerized tomography (p-QCT) with a voxel size of 82 μm and an irradiation of less than 5 μSv. Serum markers of bone resorption and bone formation will be measured every 6 months. Safety and compliance will be assessed. Primary endpoint is the change in bone microarchitecture; secondary endpoint is the change in markers of bone turnover.</p> <p>Hypothesis</p> <p>The present study should provide new information on the mode of action of nasal calcitonin. We hypothezise that - compared to placebo - calcitonin impacts on microstructural parameters, with a possible difference between weight bearing and non-weight bearing bones.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00372099</p
Italy’s Path to Very Low Fertility: The Adequacy of Economic and Second Demographic Transition Theories: Le cheminement de l’Italie vers les très basses fécondités: Adéquation des théories économique et de seconde transition démographique
The deep drop of the fertility rate in Italy to among the lowest in the world challenges contemporary theories of childbearing and family building. Among high-income countries, Italy was presumed to have characteristics of family values and female labor force participation that would favor higher fertility than its European neighbors to the north. We test competing economic and cultural explanations, drawing on new nationally representative, longitudinal data to examine first union, first birth, and second birth. Our event history analysis finds some support for economic determinants of family formation and fertility, but the clear importance of regional differences and of secularization suggests that such an explanation is at best incomplete and that cultural and ideational factors must be considered
Highly polymorphic microsatellite markers for the assessment of male reproductive skew and genetic variation in Critically Endangered crested macaques (Macaca nigra)
Genetic analyses based on non-invasively collected samples have become an important tool for evolutionary biology and conservation. Crested macaques (Macaca nigra), endemic to Sulawesi, Indonesia, are important for our understanding of primate evolution as Sulawesi macaques represent an exceptional example of primate adaptive radiation. Crested macaques are also Critically Endangered. However, to date we know very little about their genetics. The aim of our study was to find and validate microsatellite markers useful for evolutionary, conservation and other genetic studies on wild crested macaques. Using faecal samples of 176 wild macaques living in the Tangkoko Reserve, Sulawesi, we identified 12 polymorphic microsatellite loci through cross-species PCR amplification with later modification of some of these primers. We tested their suitability by investigating and exploring patterns of paternity, observed heterozygosity and evidence for inbreeding. We assigned paternity to 63 of 65 infants with high confidence. Among cases with solved paternity, we found no evidence of extra-group paternity and natal breeding. We found a relatively steep male reproductive skew B index of 0.330±0.267; mean±SD) and mean alpha paternity of 65% per year with large variation across groups and years (29-100%). Finally, we detected an excess in observed heterozygosity and no evidence of inbreeding across our three study groups, with an observed heterozygosity of 0.766±0.059 and expected heterozygosity of 0.708±0.059, and an inbreeding coefficient of -0.082±0.035. Our results indicate that the selected markers are useful for genetic studies on wild crested macaques, and possible also other Sulawesi and closely related macaques. They further suggest that the Tangkoko population of crested macaques is still genetically variable despite its small size, isolation and the species’ reproductive patterns. This gives us hope that other endangered primate species living in small, isolated populations may also retain a healthy gene pool, at least in the short term
Coupled changes in brain white matter microstructure and fluid intelligence in later life
Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at ages 73 years (n = 731) and 76 years (n = 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical “disconnection” partly explains cognitive aging
Meta-analysis of Genome-Wide Association Studies for Extraversion : Findings from the Genetics of Personality Consortium
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion.Peer reviewe
Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier
Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens
Testing the priority-of-access model in a seasonally breeding primate species
In mammals, when females are clumped in space, male access to receptive females is usually determined by a dominance hierarchy based on fighting ability. In polygynandrous primates, as opposed to most mammalian species, the strength of the relationship between male social status and reproductive success varies greatly. It has been proposed that the degree to which paternity is determined by male rank decreases with increasing female reproductive synchrony. The priority-of-access model (PoA) predicts male reproductive success based on female synchrony and male dominance rank. To date, most tests of the PoA using paternity data involved nonseasonally breeding species. Here, we examine whether the PoA explains the relatively low reproductive skew in relation to dominance rank reported in the rhesus macaque, a strictly seasonal species. We collected behavioral, genetic, and hormonal data on one group of the free-ranging population on Cayo Santiago (Puerto Rico) for 2 years. The PoA correctly predicted the steepness of male reproductive skew, but not its relationship to male dominance: the most successful sire, fathering one third of the infants, was high but not top ranking. In contrast, mating success was not significantly skewed, suggesting that other mechanisms than social status contributed to male reproductive success. Dominance may be less important for paternity in rhesus macaques than in other primate species because it is reached through queuing rather than contest, leading to alpha males not necessarily being the strongest or most attractive male. More work is needed to fully elucidate the mechanisms determining paternity in rhesus macaques
Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy
This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles
- …