1,625 research outputs found

    The vortex state in the BEC to BCS crossover: a path-integral description

    Full text link
    We derive a path-integral description of the vortex state of a fermionic superfluid in the crossover region between the molecular condensate (BEC) regime and the Cooper pairing (BCS) regime. This path-integral formalism, supplemented by a suitable choice for the saddle point value of the pairing field in the presence of a vortex, offers a unified description that encompasses both the BEC and BCS limits. The vortex core size is studied as a function of the tunable interaction strength between the fermionic atoms. We find that in the BEC regime, the core size is determined by the molecular healing length, whereas in the BCS regime, the core size is proportional only to the Fermi wave length. The observation of such quantized vortices in dilute Fermi gases would provide an unambiguous proof of the realization of superfluidity in these gases.Comment: 10 pages, 2 figure

    BCS-to-BEC crossover from the exact BCS solution

    Get PDF
    The BCS-to-BEC crossover, as well as the nature of Cooper pairs, in a superconducting and Fermi superfluid medium is studied from the exact ground state wavefunction of the reduced BCS Hamiltonian. As the strength of the interaction increases, the ground state continuously evolves from a mixed-system of quasifree fermions and pair resonances (BCS), to pair resonances and quasibound molecules (pseudogap), and finally to a system of quasibound molecules (BEC). A single unified scenario arises where the Cooper-pair wavefunction has a unique functional form. Several exact analytic expressions, such as the binding energy and condensate fraction, are derived. We compare our results with recent experiments in ultracold atomic Fermi gases.Comment: 5 pages, 4 figures. Revised version with one figure adde

    Numerical Evidence of Luttinger and Fermi Liquid Behaviour in the 2D Hubbard Model

    Full text link
    The two dimensional Hubbard model with a single spin-up electron interacting with a finite density of spin-down electrons is studied using the quantum Monte Carlotechnique, a new conjugate gradient method for the evaluation of the Edwards wavefunction ansatz, and the standard second order perturbation theory. We performed simulations up to 242 sites at U/t=4U/t=4 reaching the zero temperature properties with no ``fermion sign problem'' and found a surprisingly good accuracy of the Edwards wavefunction ansatz at low density or low doping. The conjugate gradient method was then applied to system up to 1922 sites and infinite UU for the Edwards state. Fermi liquid theory seems to remain stable in 2D for all cases studied with the exception of the half filling case where a ``Luttinger like behavior'' survives in the Hubbard model , yielding a vanishing quasiparticle weight in the thermodynamic limit.Comment: 10 pages + 4 pictures, RevTex, SISSA 121/93/CM/M

    One-Particle Excitation of the Two-Dimensional Hubbard Model

    Full text link
    The real part of the self-energy of interacting two-dimensional electrons has been calculated in the t-matrix approximation. It is shown that the forward scattering results in an anomalous term leading to the vanishing renormalization factor of the one-particle Green function, which is a non-perturbative effect of the interaction U. The present result is a microscopic demonstration of the claim by Anderson based on the conventional many-body theory. The effect of the damping of the interacting electrons, which has been ignored in reaching above conclusion, has been briefly discussed.Comment: 7 pages, LaTeX, 1 figure, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 3 (1997

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure

    Spin-Charge Separation, Anomalous Scaling and the Coherence of Hopping in exactly solved Two Chain Models

    Full text link
    The coherence of transport between two one-dimensional interacting Fermi liquids, coupled by single particle hopping and interchain interaction, is examined in the context of two exactly soluble models. It is found that the coherence of the inter-chain hopping depends on the interplay between inter-chain hopping and inter-chain interaction terms, and not simply on the ground state spectral properties of an isolated chain. Specifically, the splitting of levels in associated with interchain hopping in a g4g_4 soluble model is found to be enhanced by the introduction of interchain interaction. It is also shown that, for an exactly solvable model with both g2g_2 and g4g_4 interactions, coherent interchain hopping coexists with anomalous scaling and non-Fermi liquid behavior in the chain direction.Comment: Two postscript figure

    Decay of escherichia coli in soil following the application of biosolids to agricultural land

    Get PDF
    The decay of Escherichia coli in a sandy loam soil, amended with enhanced and conventionally treated biosolids, was investigated in a field experiment following spring and autumn applications of sewage sludge. Control soils, without the application of biosolids, were also examined to determine the background indigenous populations of E. coli which are present in the environment. The survival of indigenous E. coli and populations of E. coli applied to soil in biosolids, is assessed in relation to environmental factors influencing pathogen-decay processes in soil

    Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density

    Full text link
    Using an improved version of the projection quantum Monte Carlo technique, we study the square-lattice Hubbard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20 sites. For a given R=2t'/t, we consider that filling which leads to a singular density of states of the noninteracting problem. For repulsive interactions, we find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is consistent with the prediction of the T-matrix approximation, which sums the most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure

    Theory of the temperature and doping dependence of the Hall effect in a model with x-ray edge singularities in d=oo

    Full text link
    We explain the anomalous features in the Hall data observed experimentally in the normal state of the high-Tc superconductors. We show that a consistent treatment of the local spin fluctuations in a model with x-ray edge singularities in d=oo reproduces the temperature and the doping dependence of the Hall constant as well as the Hall angle in the normal state. The model has also been invoked to justify the marginal-Fermi-liquid behavior, and provides a consistent explanation of the Hall anomalies for a non-Fermi liquid in d=oo.Comment: 5 pages, 4 figures, To appear in Phys. Rev. B, title correcte

    Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight

    Full text link
    It is shown that the energy (ε)(\varepsilon) and momentum (k)(k) dependences of the electron self-energy function Σ(k,ε+i0)≡ΣR(k,ε) \Sigma (k, \varepsilon + i0) \equiv \Sigma^{R}(k, \varepsilon) are, ImΣR(k,ε)=−aε2∣ε−ξk∣−γ(k) {\rm Im} \Sigma^{R} (k, \varepsilon) = -a\varepsilon^{2}|\varepsilon - \xi_{k}|^{- \gamma (k)} where aa is some constant, ξk=ε(k)−μ,ε(k)\xi_{k} = \varepsilon(k)-\mu, \varepsilon(k) being the band energy, and the critical exponent γ(k) \gamma(k) , which depends on the curvature of the Fermi surface at k k , satisfies, 0≤γ(k)≤1 0 \leq \gamma(k) \leq 1 . This leads to a new type of electron liquid, which is the Fermi liquid in the limit of ε,ξk→0 \varepsilon, \xi_{k} \rightarrow 0 but for ξk≠0 \xi_{k} \neq 0 has a split one-particle spectra as in the Tomonaga-Luttinger liquid.Comment: 8 pages (LaTeX) 4 figures available upon request will be sent by air mail. KomabaCM-preprint-O
    • …
    corecore