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Density-induced BCS to Bose-Einstein crossover
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We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it
with the attractive potentialand the particle density. We emphasize specifically the role played by the particle
density in this crossover. Three different interparticle potentials are considered for the continuum model in
three spatial dimensions, while boths- andd-wave solutions are analyzed for the attractive~extended! Hubbard
model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the
d-wave solution is discussed. In particular, in the strong-coupling limit when approaching half-filling we
evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different com-
posite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.
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I. INTRODUCTION

Following the pioneering works by Eagles1 and Leggett,2

the BCS to Bose-Einstein~BE! crossover has been widel
studied in the last several years,3–8 being motivated by the
occurrence of a short coherence length in high-tempera
superconductors. The evolution from large overlapping C
per pairs~BCS limit! to small nonoverlapping bosons~BE
limit ! has essentially been envisaged by relying on the a
ciated two-body problem in the three-dimensional ca
wherein bound fermion pairs~composite bosons! form as
soon as the strength of the attractive interparticle poten
exceeds a threshold. The emphasis on the role of the in
particle potential has, however, somewhat overshadowed
effects of the particle density on the crossover itself, ev
though on physical grounds one would expect both the in
particle potentialand the density to play an essential rol
The role played by the density is suggested especially w
one analyzes the experimental phase diagram of the h
temperature cuprate superconductors in terms of the BCS
crossover, since in this case it would be the~effective! carrier
density~that is related to the doping level! to drive the sys-
tem from the vicinity of the BE~underdoped! to the BCS
~overdoped! limit.9,10

The purpose of this paper is to study thecombinedeffects
of the particle density and the interparticle potential on
~zero-temperature! BCS-BE crossover, in order to characte
ize how physical quantities evolve by varying, in particul
the particle density. To this end, we will set up a ‘‘pha
diagram’’ in the space of the potential strength and of
density, where the locations of the alternative BCS-li
crossoverlike, and BE-like regions will be identified for se
eral types of potentials.

Previous work on the BCS-BE crossover has utilized:~i! a
PRB 600163-1829/99/60~17!/12410~9!/$15.00
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three-dimensional contact potential for the continuu
model;4,5 ~ii ! the separable potential introduced by Nozie`res
and Schmitt-Rink3 ~NSR! for the three-dimensional con
tinuum model, with a characteristic momentum cutoffk0;6,8

and~iii ! a negative-U Hubbard model on a two-dimensiona
square lattice, with either an on-site11 or a
nearest-neighbor11,12 attraction. In this paper, we shall con
sider both the continuum model in three spatial dimensi
using three different types of interparticle potentials, and
s- andd-wave solutions for the attractive~extended! Hubbard
model on a two-dimensional square lattice. This will ena
us to study the effects of the particle density on the BCS-
crossover in a rather systematic way.

For the continuum case, it turns out that thefinite rangeof
the potential allows for the occurrence of the density-induc
BCS-BE crossover, which is instead not possible in the c
of a contact~zero-range! potential. As a consequence, th
size of the BCS-like region in the ‘‘phase diagram’’ ge
progressively enlarged by increasing the range of the in
particle potential.

For the lattice case, the shape of the ‘‘phase diagra
and the physical interpretation of the alternative regio
therein depend markedly on the symmetry (s or d) of the
pairing. In particular, for thed-wave pairing an increasingly
larger range of correlations among the composite bosons
up when approaching half-filling, thus establishing a te
dency toward the formation of a quasi-long-range–orde
antiferromagnetic state. In addition, thed-wave pairing, be-
ing associated with an interaction of a finite range on
lattice, enables the density-induced BCS-BE crossover to
cur over a wider range of the parameters with respect to
s-wave pairing, in analogy to what was found for the co
tinuum case.

All results presented in this paper have been obtai
12 410 ©1999 The American Physical Society
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PRB 60 12 411DENSITY-INDUCED BCS TO BOSE-EINSTEIN CROSSOVER
within a zero-temperature broken-symmetry mean-field
proach, which thus appears capable of producing results
are sensible on physical grounds under widely differ
physical conditions.

The plan of the paper is as follows. We discuss the thr
dimensional continuum case in Sec. II and the tw
dimensional lattice case in Sec. III. Section IV gives o
conclusions.

II. THREE-DIMENSIONAL CONTINUUM CASE

In this section, we examine the three-dimensio
BCS-BE crossover in the continuum case for three types
interaction potentials, and determine how the range of
potential influences the coupling vs density ‘‘phase d
gram.’’ Specifically, we consider the contact and the se
rable NSR potentials mentioned in the Introduction, plu
nonseparable Gaussian potential.

For the three-dimensional continuum case, acontact po-
tential has often been adopted asthe reference modelthat
captures the essence of the expected physics of the BCS
crossover, as a function of the coupling strength for giv
particle density. For a contact potential, the analytic solut
at the~zero-temperature! mean-field level and with the inclu
sion of Gaussian fluctuations has been determined,13 for all
values of the coupling strength~regularized in terms of the
scattering lengtha of the associated two-body problem! and
of the density~represented in terms of the Fermi wave vec
kF). All relevant physical quantities can thus be expresse
terms of the dimensionless parameterkFa, with kF being
positive by definition anda changing its sign as soon as
bound state develops. For this reason, by keepingkF fixed
and varyinga from 2` to 1` one can pass with continuit
from the BCS to the BE regime across the crossover reg
on the contrary, by keepinga fixed and varyingkF one isnot
able to pass from the BCS to the BE regime, since the
rameterkFa cannot change its sign in this way. Figure
shows the (g,kFa0) ‘‘phase diagram’’ for a contact potentia
in three dimensions, as obtained from the available anal
solution,13 where BCS-like, crossoverlike, and BE-like r
gions are identified by drawing the two curves correspond

FIG. 1. Phase diagram (g,kFa0) for a contact potential in three
dimensions, as obtained from the available analytic solution~see
text!.
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to kFjpair52p andkFjpair51/p. Here,jpair represents the
correlation length for pairs of opposite-spin fermions, wh
the two values (2p,1/p) of the parameterkFjpair character-
ize, in the order, the lower limit of the BCS-like region~with
large overlapping Cooper pairs! and the upper limit of the
BE-like region ~with small nonoverlapping bosons!, the
crossover region being constrained in between.14 The ~effec-
tive! coupling constant in this case is represented byg
5exp(a0 /a), wherea0 is an arbitrary unit of length. As an
ticipated above, it is evident from this ‘‘phase diagram’’ th
for a contact potential in three dimensions it isnot possible
to cross over from the BCS to the BE region by varying t
density alone at fixed coupling strength.

In the three-dimensional continuum case, therefore, to
amine the density-induced BCS-BE crossover a poten
with finite rangein real space is required, or equivalently,
is necessary to introduce a momentum cutoffk0 in momen-
tum space. In this context, one may utilize the separa
potential V(k,k8)5Vw(k)w(k8) ~between fermions with
opposite spins! adopted in Ref. 3, withV,0 and w(k)
5@11(uku/k0)2#21/2, and later used by some authors.6,8

Since this potential may yield unphysical results6 @also be-
cause the factorizationw(k)w(k8) is somewhat arbitrary#,
we have considered in addition a nonseparable poten
V(k,k8)5V(k2k8), which we have taken for definitenes
of the Gaussian form:

V~k2k8!5Vexp$2uk2k8u2/k0
2% ~2.1!

(V,0). By doing so, it will also be possible to determin
how alternative ways of introducing an effective range in t
interaction potential affect the boundaries of the crosso
region in the (uVu/Vc ,kF /k0) ‘‘phase diagram’’ (Vc being
the critical value ofuVu for which a bound state appears
the two-body problem!. In addition, and contrary to the sepa
rable NSR potential, the Gaussian potential~2.1! leads to
momentum-decoupling effects for small values ofk0, which
have recently been proposed as characteristic feature
high-temperature superconductors.15

For the NSR and Gaussian potentials, an analytic solu
for the ~zero-temperature! BCS-BE crossover at the mean
field level is lacking. For these potentials, we have th
solved numerically the coupled equations for thes-wave gap
function D(k) and the chemical potentialm:

D~k!52E dk8

~2p!3
V~k,k8!

D~k8!

2E~k8!
~2.2!

and

n5E dk8

~2p!3 S 12
j~k8!

E~k8!
D , ~2.3!

where j(k)5k2/(2m)2m (m being the fermionic mass!,
E(k)5Aj(k)21D(k)2, andn is the particle density. We re
call that, while for a separable potential the gap functi
acquires the formD(k)5D0w(k), for a nonseparable poten
tial D(k) does not follow, in general, the wave-vector depe
dence of the potential. In addition, for the NSR separa
potential analytic expressions forD0 andm can be obtained
in the two~BCS and BE! limits. Figure 2 shows the (uVu/Vc ,
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12 412 PRB 60ANDRENACCI, PERALI, PIERI, AND STRINATI
kF /k0! ‘‘phase diagram’’ for the~a! NSR and~b! Gaussian
potentials, where the two characteristic curveskFjpair
5(2p,1/p) for each potential have been identified as
Fig. 1. In addition, we have reported in Fig. 2 the cur
corresponding tom50 ~broken line! for both potentials. By
comparing Fig. 2 with Fig. 1, we note that the bounda
between the BE-like and the crossoverlike regions is
much altered by the introduction of a finite cutoffk0; on the
contrary, the boundary between the BCS-like and the cro
overlike regions is drastically modified, with the BCS-lik
region extending even to valuesuVu@Vc for sufficiently high
densities. Note also the reentrant shape of the curvekFjpair
52p at kF.k0 for both potentials, which makes it possib
to cross over from the BCS to the BE regionby varying the
densityfor fixed uVu.Vc .

FIG. 2. Phase diagram (uVu/Vc ,kF /k0) for the ~a! NSR and~b!
Gaussian potentials in three dimensions~see the text for the mean
ing of the different curves!.
r

t

s-

It is further interesting to note that the three curves of F
2~a! and of Fig. 2~b! depart from the common origin
(uVu/Vc51, kF50!. Near this origin, in fact,kF!k0 and the
gap D05D(k50) on the BCS side is proportional t
(kF

2/2m)exp$p/(2kFa)%, as given by the solution for a contac
potential.5,13 Sincejpair}kF /D0 in the BCS limit,14 keeping
the product kFjpair}exp$2p/(2kFa)%5const, requires
a→2` whenkF→0. This, in turn, implies that the curve
corresponding tokFjpair*2p depart from the pointuVu
5Vc on thekF50 axis. On the BE side, on the other han
whenkF!k0 ~anduVu.Vc), jpair coincides with the bound-
state radiusr 0;14 keeping thus constant the productkFjpair
5kFr 0 whenkF→0 implies r 0→`, i.e., uVu→Vc .16

The reentrant shape of the curvekFjpair52p in Fig. 2 at
kF.k0, too, can be understood by simple analytic argume
as follows. When kF!k0, the expression D0 /m
}exp$p/(2kFa)%, which is valid on the BCS side for a conta
potential, can again be used. At fixed value ofuVu,Vc ~such
that the scattering lengtha is negative!, D0 /m vanishes when
kF→0. In this way, one approaches the~weak-coupling!
BCS limit for decreasingkF at fixeda,0. WhenkF@k0, on
the other hand, it is necessary to distinguish the NSR fr
the Gaussian potential. For the NSR potential, the value
D(kF)5D0w(kF) can be obtained analytically in the BC
limit ~andkF@k0), in the form

D~kF!

m
'8expH 1

N0V~kF ,kF!J , ~2.4!

whereN05mkF /(2p2) is the density of states at the Ferm
level ~per spin component! and V(kF ,kF).(k0 /kF)2V. In
this case, the decrease ofuV(kF ,kF)u for increasingkF /k0
overcomes in Eq.~2.4! the increase ofN0, and drives the
system toward the BCS~weak-coupling! limit. For the non-
separable Gaussian potential, on the other hand, it is the
fective reduction of the density of states and not the decre
of the potential strength to drive the system toward the B
limit for increasingkF /k0 at givenV. To verify this state-
ment, we recall that in the BCS limitE(k8) in Eq. ~2.2! is
strongly peaked aboutkF . WhenkF@k0 , D(k) is thus also
strongly peaked aboutkF owing to the form~2.1! of the
potential. In this way, for given value ofk, the integral over
k8 in Eq. ~2.2! extends effectively over a sphere center
aboutk with radius of the orderk0. The relevant density of
states gets thus reduced from the valueN0 by a geometrical
factor R of the order (4pk0

3/3)/(8pkF
2k0), which represents

the ratio of the effective volume of integration and the BC
spherical shell of width 2k0. We then obtain in the BCS limit
for the Gaussian potential whenkF@k0:

D~kF!}
k0kF

m
expH 1

RN0VJ . ~2.5!

In this case, it is thus the decrease ofR for increasingkF to
drive the system toward the BCS~weak-coupling! limit for a
given value ofV.

In summary, we have shown that, although the qualitat
behavior of the curves corresponding tokFjpair52p in Figs.
2~a! and 2~b! looks similar, the physical mechanism behin
them appears to be quite different. For the separable N
potential the increase ofkF /k0 results in a reduction of the
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PRB 60 12 413DENSITY-INDUCED BCS TO BOSE-EINSTEIN CROSSOVER
interaction strength, while for the nonseparable Gaussian
tential it results in a reduction of the relevant density
states. These two alternative effects allow the dens
induced BCS-BE crossover to occur in the two cases, res
tively.

The curves of Fig. 2 have been drawn cautiously, up
values of uVu/Vc for which the conditionumu!k0

2/(2m) is
satisfied. This condition avoids, in fact, instabilities of t
system in the bosonic limit, which unavoidably occur whe
fermionic potential withfinite momentum rangek0 is consid-
ered, and are due to the boson-boson effective interac
potential having a dominant attractive part in this case.6,17

We have verified, in particular, for the Gaussian poten
that the bosonic chemical potentialmB52m1e0 ~wheree0
is the bound-state energy of the associated two-b
problem5,6! becomes negative whenumu*k0

2/m, a behavior
that can be attributed to an overall attraction among the c
posite bosons~with the compressibility being, however, sti
positive!. In this context, we mention also that the existen
of a competition between pair and quartet condensation
Fermi liquid with a finite-range attraction has recently be
investigated.18

A related instability toward phase separation~with the
compressibility becoming instead negative! has been generi
cally pointed out for the attractive~extended! Hubbard
model on a two-dimensional square lattice,11 which we pass
now to examine in detail in the context of the BCS-BE cro
over.

III. TWO-DIMENSIONAL LATTICE CASE

In this section, we examine the BCS-BE crossover fo
two-dimensional attractive Hubbard model, again address
specifically the role played by the particle density in drivi
this crossover. To consider thed-wave besides thes-wave
solution, we take the fermionic potential to contain an int
site besides an on-site term. In addition, for thed-wave so-
lution we adopt two different single-particle dispersions,
order to mimic the low-energy electronic band structure
served for the cuprates in different doping ranges,19,20as dis-
cussed in more detail below. We recall that the issue of
d-wave symmetry in the context of the BCS-BE crosso
has been discussed briefly in Ref. 21 and more extensive
Refs. 11 and 22.

For this model we thus take

V~k,k8!5U12V@cos~kx2kx8!1cos~ky2ky8!#, ~3.1!

whereV<0. In particular, whenV50 we consider an on
site attractionU,0, with the hopping in the kinetic term o
the fermionic Hamiltonian limited to nearest-neighbor si
~which corresponds to the ordinary negative-U Hubbard
model11!; when V,0 we consider instead an on-site repu
sion U.0, with the hopping in the kinetic term of the fe
mionic Hamiltonian either limited to nearest-neighbor si
or ranging over second- and third-neighbor sites~which cor-
responds to an extended attractive Hubbard model, with
on-site repulsion23!. Recall that the term proportional toV in
Eq. ~3.1! is associated with an attraction between oppos
spin fermions on neighboring sites in the square lattice.
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A. s-wave solution

The negative-U Hubbard model@obtained by takingV
50 andU,0 in Eq.~3.1!# plays on the lattice an analogou
role to the contact potential in the continuum case. For t
model, the only nontrivial solution to the gap equation~2.2!
@with the integration over the wave vector being now limit
to the two-dimensional Brillouin zone~BZ!# has s-wave
symmetry @D(k)5D0#, and the dispersion relationj(k)
522t(coskx1cosky)1nU/22m (t.0) contains the Har-
tree shiftnU/2.24 The corresponding (uUu/t,n) ‘‘phase dia-
gram’’ is shown in Fig. 3~a!, with the boundaries betwee
the alternative~BCS, crossover, and BE! regions identified
like for the continuum case. Note that the critical valueUc

FIG. 3. ~a! Phase diagram (uUu/t,n) for the s-wave solution of
the negative-U Hubbard model in two dimensions~with on-site
attraction and nearest-neighbor hopping!; ~b! phase diagram@e0 ,
kF

2/(2m)# for a contact potential in two dimensions~as obtained
from the available analytic solution!.
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for which a bound state appears in the two-body (n50)
problem consistently vanishes for thes-wave solution in two
dimensions. Note also that the reentrant shape of the c
kFjpair52p ~as well as of the curvekFjpair51/p) stems
now from the fact that the van Hove singularity of the de
sity of states is approached whenn tends to 1~half-filling!.
@Owing to the symmetry of the density of states about h
filling, the diagram of Fig. 3~a! is also symmetric about half
filling.# Note finally that the crossover from the BCS to t
BE region by varying the density for fixeduUu is possible
only for uUu&2.4t, the BE and crossover regions being d
pressed in this case to extremely small values ofn.

It is interesting to compare the ‘‘phase diagram’’ of Fi
3~a! for the two-dimensional negative-U Hubbard model,
with the ‘‘phase diagram’’ @e0 ,kF

2/(2m)# @in units of
(ma0

2)21, wherea0 is again an arbitrary unit of length# for
the contact potential in the two-dimensional continuum ca
for which the analytic solution is also available.25,13 This
‘‘phase diagram’’ is shown in Fig. 3~b!, where now the
boundary curves withkFjpair5(2p,1/p) correspond to
straight lines.@We have verified numerically that the solu
tions to the coupled equations~2.2! and ~2.3! for the
negative-U Hubbard model and for the contact potential
two dimensions coincide within a few percent whenn&0.1,
even for values ofuUu/t of the order of some units.# Note
that theabsence of a thresholdfor the occurrence of a boun
state in two dimensions makes the density-induced BCS
crossover possible even for a short-range potential, in c
trast to the behavior for a three-dimensional contact poten
obtained previously~cf. Fig. 1!.

A comment on the nature of the bosonic limit for larg
values ofuUu/t when approaching half-filling in Fig. 3~a! is
in order at this point. For the continuum case, the limit o
‘‘dilute’’ gas of composite bosons can be reached for a
particle density, insofar as the range of the residual boso
interaction ~or, equivalently, the size of the composi
bosons! vanishes for large values of the fermionic interacti
strength~barring the instability problem mentioned at th
end of Sec. II!. In the lattice case, instead, the lattice spac
provides an additional length scale in the problem, wh
makes it possible to depart from the ‘‘dilute’’ gas limit irre
spective of the size of the composite bosons. It is, in fact,
‘‘overlap’’ of the centers of mass of the composite boso
which is forced by increasing the density on the lattice,
make the usual ‘‘dilute’’ gas conditionkFa!1 ~as defined
for the continuum model! no longer representing a ‘‘dilute’
gas situation in the lattice case. For such a high-density
of composite bosons, therefore, the underlying fermionic
grees of freedom are expected to become significant ag3

To make these arguments more quantitative, let us c
sider the following bosonlike operator:

b0
†5(

k
g~k!ck↑

† c2k↓
† , ~3.2!

wherecks
† creates a fermion with wave vectork and spins,

g(k) represents the pair wave function, and the sum overk is
limited to the Brillouin zone in the lattice case. The ensui
commutator
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@b0 ,b0
†#5(

k
ug~k!u2~12nk↑2n2k↓! ~3.3!

with nks5cks
† cks , can be regarded as ac number provided

^nks&!1 over the relevant set of states.26 The normalization
condition

(
k,s

^nks&5N ~3.4!

(N being the total number of fermions!, implies that^nks&
>n/2 over afinite region ofk space, whenever the range
the sum overk remains limited~as for the lattice case!. This
restriction, in turn, implies that the commutator~3.3! cannot
be considered as ac number, as soon asn is an appreciable
fraction of the unity. Note that the size of the compos
bosons does not enter the above argument.

In summary, we have argued on quite general grou
that, to reach a satisfactory bosonic limit in the lattice ca
the conditionkFjpair,1/p valid in the continuum case ha
to be supplemented by the conditionn!1.

B. d-wave solution

WhenV,0 andU.0 in Eq. ~3.1!, a d-wave solution of
the typeD(k)5D1(coskx2cosky) can be considered. In thi
case, we take either a nearest-neighbor dispersion rela
j(k)522t(coskx1cosky)1n(U14V)/22m as before (t-V
model!, or a second- and third-neighbor dispersi
relation j(k)54t8coskx cosky12t9(cos 2kx1cos 2ky)1n(U
14V)/22m with t8.0 and t9.0 (t8-t9-V model!. In both
cases we have included the Hartree shift.24 The latter disper-
sion relation favors the formation of bound pairs wi
d-wave symmetry at low density,23 the critical valueVc ~for
a bound state to appear in the two-body problem! vanishing
whent9,0.5t8. For the former dispersion relation limited t
nearest-neighbor sites, on the other hand, a finite value oVc
occurs also for thed-wave solution at zero density.11

As already mentioned, the two different single-partic
dispersion relations that we have adopted are meant to m
the low-energy electronic band structure for the cuprates
different ranges of the doping leveld. Specifically, the
(t8,t9) dispersion captures the small-arc features of
Fermi surface detected in underdoped cuprates,19,27 for
which we can interpretn;d&0.15. Thet dispersion, on the
other hand, reproduces the main features of the large Fe
surface and its doping dependence for nearly optima
doped cuprates,20 provided one interpretsn;12d with
0.15&d&0.30.

The ‘‘phase diagrams’’ for thet-V andt8-t9-V models are
shown, respectively, in Figs. 4~a! and 4~b!, where the bound-
aries between different regions have been identified as
Fig. 3~a!.28 Note in Fig. 4~a! the occurrence of a finite critica
valueVc (Vc/4t51.83), past which the BE region develop
for n50 @Vc vanishes instead in Fig. 4~b!#. We also mention
that the BCS-like region, corresponding to small values
uVu in Figs. 4~a! and 4~b!, consistently supports nonvanishin
values of the gapD1, contrary to a recent statement for th
t-V model.22 Note finally, that the density-induced BCS-B
crossover is allowed for thet8-t9-V model but not for thet-V
model. This finding is, in turn, consistent with our previo
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PRB 60 12 415DENSITY-INDUCED BCS TO BOSE-EINSTEIN CROSSOVER
assertions that thet8-t9-V model might be relevant to th
underdoped range of the cuprate superconductors and
the BCS-BE crossover scenario might apply to that rang

A comment on theadditional region at the upper-righ
corner of the ‘‘phase diagrams’’ in Figs. 4~a! and 4~b!, which
is delimited by a long-dashed line and has been identified
‘‘correlated bosons’’~CB!, is in order.

This region is associated with a peculiar behavior ofjpair
for the d-wave solution as a function ofuVu when n ap-
proaches half-filling, in the sense thatjpair does not show a
monotonic decrease for increasinguVu and converges asymp
totically ~whenuVu→` andn,1) to a finite value, which is
larger than the lattice spacing.

FIG. 4. Phase diagram (uVu/4t,n) for thed-wave solution of the
extended Hubbard model with attraction between nearest-neig
sites in two dimensions, considering~a! nearest-neighbor or~b!
second- and third-neighbor hopping.
hat

as

This asymptotic value increases withn and eventually di-
verges asn→1, making thus the productkFjpair arbitrarily
large.@This peculiar behavior is absent for thes-wave solu-
tion discussed previously, for whichjpair is instead a mono-
tonically decreasing function ofuVu for any givenn. Consis-
tently, the CB region is missing in Fig. 3~a!.# On physical
grounds, the divergence ofjpair cannot be attributed either t
the system converging to a BCS-like regime with large ov
lapping Cooper pairs or to the size of the composite bos
becoming infinitely large. Rather, the divergence ofjpair is
due to the establishing ofquasi-long-range-ordercorrela-
tions among the composite bosons, which reside individu
on nearest-neighbor sites. Under these circumstances,jpair
weights preponderantly the correlation between oppos
spin fermions belonging todifferent composite bosons
rather than the usual intraboson correlation. Accordingly,
the d-wave solution whenn→1, jpair no longer represents
the radius of the composite bosons in the strong-coup
limit.

To make the above argument more quantitative, we re
the original definition ofjpair in terms of the two-particle
correlation function:14,6

jpair
2 5

E drg↑,↓~r !r2

E drg↑,↓~r !

, ~3.5!

where

g↑,↓~r !5
1

n2
^c↑

†~r !c↓
†~0!c↓~0!c↑~r !&2

1

4

5
1

n2
u^Fuc↑

†~r !c↓
†~0!uF&u2 ~3.6!

is the pair-correlation function for opposite spin fermio
~the last expression holding specifically for the BCS grou
stateuF&). From this definition, it appears evident that,
principle,g↑,↓(r ) does not distinguish between opposite-sp
fermions belonging to thesamepair or todifferentpairs. In
practice, in the strong-coupling limitg↑,↓(r ) represents~the
square of! the pair wave function whenever no correlation
established among the composite bosons; in this case,jpair
tends to the bound-state radius, as one verifies for thes-wave
solution. In the case that a definite correlation is establis
among the composite bosons, on the other hand,g↑,↓(r )
spreads over a large~and even infinite! number of lattice
sites, andjpair increases~and eventually diverges! accord-
ingly. In this case,g↑,↓(r ) embodies the correlation amon
different composite bosons and is totally unrelated to the p
wave function.

The occurrence of this novel feature for thed-wave solu-
tion is evidenced in Fig. 5~a!, where the amplitude

f~Rn!5
1

N (
k

BZ

exp$2 ik•Rn%
D~k!

2E~k!
~3.7!

is reported foruVu/t@1 andn51 over a grid of lattice sites
Rn (N being the total number of sites!; in this way,uf(Rn)u2
represents the lattice version ofg↑,↓(r ) given by Eq.~3.6!.

or
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We see from this figure that the amplitude~3.7! develops
clear structures near the lattice diagonals, thus establis
definite correlations among opposite-spin fermions belo
ing to different composite bosons.29

This behavior can also be checked analytically, mak
use of the fact that at half fillingm equals the Hartree shif
(U14V)/2 and thus the single-particle dispersionj(k) is
negligible in comparison touD(k)u when uVu/t@1 @barring
values ofk for which D(k) vanishes by symmetry#. In this
case

D~k!

2E~k!
5

D~k!

2uD~k!u
5

1

2
sgn~coskx2cosky! ~3.8!

FIG. 5. ~a! d-wave amplitudef(Rn) over the sitesRn of a
two-dimensional square lattice, obtained for thet-V model when
uVu/t@1 andn51; ~b! Pictorial representation of the ordering o
the composite bosons withd-wave symmetry on the two
dimensional square lattice whenuVu/t@1 andn51.
ng
-

g

in Eq. ~3.7! alternates sign according to thed-wave symme-
try, and its lattice Fourier transform

f~Rn!5
1

p2

@12~21!nx1ny#

nx
22ny

2
~3.9!

@with Rn5(nx ,ny) in units of the lattice spacing# decays as a
power law for increasing distance whennx1ny is an odd
integer, while it vanishes identically whennx1ny is an even
integer. @In contrast, for thes-wave solutionD(k)/E(k)
tends to a constant value whenuVu/t@1 andn51, and the
corresponding Fourier transform is a Kronecker deltadRn ,0 .#
The ensuing picture bears strong resemblance with an a
ferromagnetic ordering on a square lattice, with oppos
spins alternating over the two interpenetrating sublattice
which the square lattice can be partitioned. The ordering
the composite bosons~in the strong-coupling limit when ap
proaching half-filling!, as envisaged from the above consi
erations, is shown schematically in Fig. 5~b!. Note that the
quasi-long-range orderassociated with the algebraic deca
in Eq. ~3.9! corresponds to a divergentjpair , even though it
does not represent a true long-range antiferromagnetic o
of the spins. Physically, such a strong correlation amo
fermions with opposite spins stems from the original ferm
onic attraction between opposite-spin fermions residing
nearest-neighbor sites, which corresponds to the form~3.1!
of the potential. It is for these reasons that we have identi
the region in the upper-right corner of Figs. 4~a! and 4~b!
~delimited by a long-dashed line! as ‘‘correlated bosons’’
rather than BCS-like, even thoughkFjpair becomes defi-
nitely larger than 2p in this region.30

Another relevant difference of thed-wave from the
s-wave solution, is the fact that in the BE region of Figs. 4~a!
and 4~b! (22m) doesnot reduce to the bound-state energ
e0 of the associated two-body problem, unlessn50 strictly.
This additional feature of thed-wave solution can also be
associated with the augmented correlation among the c
posite bosons with increasingn, as discussed previously
Such a correlation makes, in fact, the energy required
extract two fermions from the system different from the e
ergy required to break up asinglecomposite boson in isola
tion, owing to the additional correlation energy among t
composite bosons.

The relevance of the correlation energy among the co
posite bosons is also suggested by the behavior of
‘‘bosonic’’ chemical potentialmB52m1e0 in the BE region
~delimited by n<0.016, irrespective of the single-partic
dispersion!. In this low-density region one findsmB5(U
12V)n. When 0,U,2uVu, mB is negative, corresponding
to an effective averageattraction between the composite
bosons. The compressibility of the system is also negativ
this order, thus indicating a tendency toward pha
separation.11 WhenU.2uVu, on the other hand,mB and the
compressibility are both positive; in this case, the effect
bosonic average interaction would berepulsive, with an in-
creasing repulsion between the composite bosons asuVu ~and
U) increases. This situation has to be contrasted with
negative-U Hubbard model, for which the composite boso
become asymptotically free asuUu→`.24
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IV. CONCLUDING REMARKS

In this paper we have examined how the particle den
influences the BCS-BE crossover, by analyzing several ty
of fermionic interaction potentials both in three dimensio
~continuum case! and in two dimensions~continuum and lat-
tice cases!. We have reached the conclusion that the fin
range of the potential as well as the absence of a thres
~for a bound state to occur in the associated two-body pr
lem! favor quite generally the density-induced crossover.

In particular, for the continuum case we have verified t
in three dimensions~where a finite threshold exists in th
two-body problem! it is the finite range of the potential t
make the density-induced crossover possible, while in
dimensions the absence of a threshold suffices to the pur
even when a zero-range potential is considered. In addit
for the continuum case we have argued that the dens
induced crossover~for a finite-range potential! occurs at ar-
bitrary values of the interaction strength, owing to the fa
that, in this case, the particle density can be augmented w
out bound.

For the lattice case, we have considered two dimens
only and investigated, alternatively, the absence or prese
of a threshold, depending on the symmetry of the gap par
eter and on the shape of the single-particle dispersion r
tion. We have found that the absence of a threshold defini
favors the density-induced BCS-BE crossover, and t
spreading the range of the potential on the lattice makes
density-induced BCS-BE crossover to occur over a wi
density range. In the presence of a threshold~at least for the
specific potential extending over nearest-neighbor sites
we have considered!, on the other hand, the density-induc
BCS-BE crossover turned out not to be possible, owing
sentially to the absence of the reentrant shape of the c
delimiting the BCS-like region. This situation contrasts o
finding for the continuum case in the presence of a thresh

In this respect, an important difference between the c
tinuum and lattice cases appears to be the occurrence o
intrinsic upper value for the densityin the lattice case, a
least when one considers a simple band only. In this case
Fermi wave vectorkF cannot exceed an upper bound of t
orderp ~in units of the inverse of the lattice constant!. For
the nearest-neighbor interaction that we have considere
the lattice case, the characteristic wave vectork0, too, can be
taken of the orderp and the conditionkF@k0 ~which in the
ed
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continuum case was associated with the reentrant shape! can-
not be satisfied. Consequently, no reentrant shape of
curve delimiting the BCS-like region is expected for the la
tice case. The occurrence of the reentrant shape, howe
may nota priori be excluded when considering an intera
tion potential extending over distant neighbors in the latti
thus decreasingk0 accordingly. In any case, the occurren
of an intrinsic upper bound on the density~and thus onkF)
will make the BCS-like region to disappear for large enou
interaction strength, thus preventing the density-induc
BCS-BE crossover.

We have also found that the presence of an upper bo
on the density in the lattice case and the finite size of
composite bosons for thed-wave solution induce definite
correlations among the composite bosons, giving rise t
magnetic correlated state near half-filling. The simultane
presence of superconducting off-diagonal long-range or
and of antiferromagnetic correlations without long-range o
der, which we have found for thed-wave solution, represent
per sean appealing result, in the light of the current pheno
enology of the cuprate superconductors. The interes
physics that has emerged for thed-wave solution in the lat-
tice case may then provide a general framework for fut
investigations on the BCS-BE crossover, for instance, c
sidering finite-temperature effects and going beyond
mean-field approximation. In this respect, facing a pro
treatment of the residual boson-boson interaction in the
region seems to be unavoidable, not only in the thr
dimensional continuum case~as shown already in Ref. 17!,
but especially in the two-dimensional lattice case for t
d-wave solution, where the boson-boson interaction g
considerably enhanced.

Finally, we point out that the need of a reduced spa
dimensionality and of a finite range of the potential, whi
we have found for the density-induced BCS-BE crossove
occur, matches the generic features observed for the cup
superconductors and strengthen accordingly the BCS
crossover as a possible scenario for describing the evolu
from overdoped to underdoped cuprates.
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