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We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it
with the attractive potentiandthe particle density. We emphasize specifically the role played by the particle
density in this crossover. Three different interparticle potentials are considered for the continuum model in
three spatial dimensions, while bathandd-wave solutions are analyzed for the attractigrtended Hubbard
model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the
d-wave solution is discussed. In particular, in the strong-coupling limit when approaching half-filing we
evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different com-
posite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.
[S0163-18209)00737-X]

[. INTRODUCTION three-dimensional contact potential for the continuum
model#® (i) the separable potential introduced by Noeg
Following the pioneering works by Eagfeand Leggett, ~ and Schmitt-Rink (NSR) for the three-dimensional con-
the BCS to Bose-EinsteifBE) crossover has been widely tinuum model, with a characteristic momentum cutiaff®®
studied in the last several yedr$, being motivated by the and(iii) a negatived Hubbard model on a two-dimensional
occurrence of a short coherence length in high-temperatursquare  lattice, with either an on-sSte or a
superconductors. The evolution from large overlapping Coonearest-neighbdt!? attraction. In this paper, we shall con-
per pairs(BCS limit) to small nonoverlapping bosoi8E  sider both the continuum model in three spatial dimensions
limit) has essentially been envisaged by relying on the assasing three different types of interparticle potentials, and the
ciated two-body problem in the three-dimensional cases andd-wave solutions for the attractiextendeglHubbard
wherein bound fermion pairécomposite bosonsform as  model on a two-dimensional square lattice. This will enable
soon as the strength of the attractive interparticle potentialis to study the effects of the particle density on the BCS-BE
exceeds a threshold. The emphasis on the role of the intecrossover in a rather systematic way.
particle potential has, however, somewhat overshadowed the For the continuum case, it turns out that fiméte rangeof
effects of the particle density on the crossover itself, everthe potential allows for the occurrence of the density-induced
though on physical grounds one would expect both the interBCS-BE crossover, which is instead not possible in the case
particle potentialand the density to play an essential role. of a contact(zero-rangg potential. As a consequence, the
The role played by the density is suggested especially whesize of the BCS-like region in the “phase diagram” gets
one analyzes the experimental phase diagram of the higlprogressively enlarged by increasing the range of the inter-
temperature cuprate superconductors in terms of the BCS-Bparticle potential.
crossover, since in this case it would be th#fective carrier For the lattice case, the shape of the “phase diagram”
density(that is related to the doping leyeb drive the sys- and the physical interpretation of the alternative regions
tem from the vicinity of the BE(underdopefito the BCS therein depend markedly on the symmetsydr d) of the
(overdoped limit. %1° pairing. In particular, for thel-wave pairing an increasingly
The purpose of this paper is to study ttembinedeffects  larger range of correlations among the composite bosons sets
of the particle density and the interparticle potential on theup when approaching half-filling, thus establishing a ten-
(zero-temperatupeBCS-BE crossover, in order to character- dency toward the formation of a quasi-long-range—ordered
ize how physical quantities evolve by varying, in particular, antiferromagnetic state. In addition, tdevave pairing, be-
the particle density. To this end, we will set up a “phaseing associated with an interaction of a finite range on the
diagram” in the space of the potential strength and of thdattice, enables the density-induced BCS-BE crossover to oc-
density, where the locations of the alternative BCS-like,cur over a wider range of the parameters with respect to the
crossoverlike, and BE-like regions will be identified for sev- sswave pairing, in analogy to what was found for the con-
eral types of potentials. tinuum case.
Previous work on the BCS-BE crossover has utilizgda All results presented in this paper have been obtained
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10' . . 10 Keépair =27 andKgépqi = Um. Here, ., represents the
correlation length for pairs of opposite-spin fermions, while
the two values (z,1/m) of the parametekg§,,;, character-
ize, in the order, the lower limit of the BCS-like regiowith
large overlapping Cooper pajrand the upper limit of the
BE-like region (with small nonoverlapping bosopsthe
crossover region being constrained in betw&efhe (effec-
tive) coupling constant in this case is represented goy
=exp@y/a), whereay is an arbitrary unit of length. As an-
ticipated above, it is evident from this “phase diagram” that
for a contact potential in three dimensions itnist possible
to cross over from the BCS to the BE region by varying the
density alone at fixed coupling strength.

In the three-dimensional continuum case, therefore, to ex-
amine the density-induced BCS-BE crossover a potential
8 with finite rangein real space is required, or equivalently, it

FIG. 1. Phase diagrang(kga,) for a contact potential in three is necessary to introduce a momentum cutgfin momen-

dimensions, as obtained from the available analytic solutsz®e tum SPace- In this context, one may utilize the sepz?\rable
tex. potential V(k,k")=Vw(k)w(k’) (between fermions with

opposite spins adopted in Ref. 3, withv<<0 and w(k)
_ -1/
within a zero-temperature broken-symmetry mean-field ap=[1+ (|k|/ko)?]"*? and later used by some authéfs.

proach, which thus appears capable of producing results th&ince this potential may yield unphysical restifalso be-
are sensible on physical grounds under widely differenause the factorizatiow(k)w(k’) is somewhat arbitray
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physical conditions. we have considered in addition a nonseparable potential
The plan of the paper is as follows. We discuss the threeV(k.k") =V(k—k"), which we have taken for definiteness
dimensional continuum case in Sec. Il and the two-Of the Gaussian form:
dimensional lattice case in Sec. lll. Section IV gives our , P
conclusions. V(k—k'")=Vexp{ — |k—k'|*/kg} 2.1
(V<0). By doing so, it will also be possible to determine
Il. THREE-DIMENSIONAL CONTINUUM CASE how alternative ways of introducing an effective range in the

interaction potential affect the boundaries of the crossover

In this section, we examine the three-dimensional _ . "~ “ ; " :
BCS-BE crossover in the continuum case for three types o¥eg|on in the [V|/V, k/ko) “phase diagram” Y/, being

interaction potentials, and determine how the range of th the critical value of V] for which a bound state appears in

potential influences the coupling vs density “phase dia- e two-body problem In addition, and contrary to the sepa-

gram.” Specifically, we consider the contact and the sepa[able NSR potential, the Gaussian potent@ll) leads to

rable NSR potentials mentioned in the Introduction, plus atrromentum-decouplmg effects for small valugsk_@f which
. . ave recently been proposed as characteristic features of
nonseparable Gaussian potential.

For the three-dimensional continuum casesoatact po- high-temperature superconductdfs.
. & P For the NSR and Gaussian potentials, an analytic solution
tential has often been adopted #we reference modédhat  the (zero-temperatuleBCS-BE crossover at the mean-
captures the essence of the expected physics of the BCS- g P

. : -~ Tield level is lacking. For these potentials, we have thus
crossover, as a function of the coupling strength for given . )
solved numerically the coupled equations for sa@ave gap

particle density. For a contact potential, the analytic solutio : X -
at the(zero-temperatujenean-field level and with the inclu- nfunctlonA(k) and the chemical potential:

sion of Gaussian fluctuations has been determiféds all ) ,
values of the coupling strengtinegularized in terms of the A(K)= _J dk , AKD

. ; (k) V(k,k") 2.2
scattering lengtla of the associated two-body problémnd (2m)° 2E(k")
of the density(represented in terms of the Fermi wave vector
ke). All relevant physical quantities can thus be expressed ift"!
terms of the dimensionless paramekga, with kg being
positive by definition anda changing its sign as soon as a _f dk’
bound state develops. For this reason, by keepgindixed - (2m)3
and varyinga from —c0 to +c one can pass with continuity
from the BCS to the BE regime across the crossover regionwhere £(k) =k?/(2m)—u (m being the fermionic mags
on the contrary, by keepingfixed and varyindg one isnot  E(k)= JVEK)Z+A(K)?, andn is the particle density. We re-
able to pass from the BCS to the BE regime, since the pacall that, while for a separable potential the gap function
rameterkga cannot change its sign in this way. Figure 1 acquires the forma (k) =A,w(k), for a nonseparable poten-
shows the §,krag) “phase diagram” for a contact potential tial A(k) does not follow, in general, the wave-vector depen-
in three dimensions, as obtained from the available analytidence of the potential. In addition, for the NSR separable
solution!® where BCS-like, crossoverlike, and BE-like re- potential analytic expressions far, and u can be obtained
gions are identified by drawing the two curves correspondingn the two(BCS and BE limits. Figure 2 shows the Y|/ V.,

L &K
E(k')

: (2.3
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10’ : : It is further interesting to note that the three curves of Fig.
2(a) and of Fig. Zb) depart from the common origin
(IV|/V.=1, ke=0). Near this origin, in factke<k, and the
10° ¢ 1 gap Ag= A(k 0) on the BCS side is proportional to
(k2/2m)exp|m/(2k=a)}, as given by the solution for a contact
potential.5'13 Sinceépair ke /Aq in the BCS limit!* keeping
the product Keép,i >exp{—m/(2ksa)}=const, requires
a— — whenkgr—0. This, in turn, implies that the curves
corresponding tokpgpa,,ZZW depart from the poinV|
=V, on thekg=0 axis. On the BE side, on the other hand,
whenkF<ko (and|V|>V,), &y, coincides with the bound-
10° | ] state radiug o;'* keeping thus constant the produ«.;;tgpa,r
=Kgro whenkg—0 impliesry—, i.e., |V|—=V,.?
The reentrant shape of the curkigg,,,;, =2 in Fig. 2 at
107 s ke=Kk,, too, can be understood by simple analytic arguments
0 1 2 3  as follows. When kpe<k, the expression Ag/u
VI/V, cexp{7/(2ksa)}, which is valid on the BCS side for a contact
potential, can again be used. At fixed valug\sf<V, (such
that the scattering lengthis negative, Ao/ vanishes when
(a) ke—0. In this way, one approaches ttieeak-coupling
BCS limit for decreasingsr at fixeda<<0. Whenkg>k,, on
10" . . the other hand, it is necessary to distinguish the NSR from
the Gaussian potential. For the NSR potential, the value of
A(kg)=Aqw(kg) can be obtained analytically in the BCS
limit (andkg>kg), in the form

Ake) g p[—l } 2.4
n CFRNNVke k) | 249

107

k. /K,

107

BCS
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10™

K. /K,

whereNy=mk:/(27?) is the density of states at the Fermi
level (per spin componehtand V (kg ,kg) = (ko/Kg)2V. In
this case, the decrease [0M(kg,kg)| for increasingkg/kg
overcomes in Eq(2.4) the increase oy, and drives the
system toward the BC8veak-coupling limit. For the non-
separable Gaussian potential, on the other hand, it is the ef-
fective reduction of the density of states and not the decrease
of the potential strength to drive the system toward the BCS
limit for increasingkg/kqy at givenV. To verify this state-
ment, we recall that in the BCS limE(k’) in Eq. (2.2) is
strongly peaked abold: . Whenkg>k,, A(K) is thus also
(b) strongly peaked aboutz owing to the form(2.1) of the
potential. In this way, for given value &f, the integral over
FIG. 2. Phase diagranj\{|/V, ,k /ks) for the (@) NSR and(b) k” in Eq._(2.2) e_zxtends effectively over a sphere cgntered
Gaussian potentials in three dimensigase the text for the mean- aPoutk with radius of the ordek,. The relevant density of
ing of the different curves states gets thus reduced from the valyeby a geometrical
factor R of the order (4rk3/3)/(87kZky), which represents
Ke/Ko) “phase diagram” for the(a) NSR and(b) Gaussian  the ratio of the effective volume of integration and the BCS
potentials, where the two characteristic curvksé,.i;  spherical shell of width R,. We then obtain in the BCS limit
=(2m,1/m) for each potential have been identified as forfor the Gaussian potential whé@> K,
Fig. 1. In addition, we have reported in Fig. 2 the curve
corresponding ta.=0 (broken ling for both potentials. By koke 1
comparing Fig. 2 with Fig. 1, we note that the boundary A(kF)chexp[RN V]' (2.9
between the BE-like and the crossoverlike regions is not 0
much altered by the introduction of a finite cutéff; on the  In this case, it is thus the decreaseRofor increasingkg to
contrary, the boundary between the BCS-like and the crosgdrive the system toward the BG®eak-coupling limit for a
overlike regions is drastically modified, with the BCS-like given value ofV.
region extending even to valupg|> V. for sufficiently high In summary, we have shown that, although the qualitative
densities. Note also the reentrant shape of the ckpég,;,  behavior of the curves correspondingkiet, i, =27 in Figs.
=2 atkg=k, for both potentials, which makes it possible 2(a) and 2b) looks similar, the physical mechanism behind
to cross over from the BCS to the BE regiby varying the them appears to be quite different. For the separable NSR
densityfor fixed |V|>V,. potential the increase & /kq results in a reduction of the

10°?
BCS
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10

10
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interaction strength, while for the nonseparable Gaussian po 1
tential it results in a reduction of the relevant density of

states. These two alternative effects allow the density-
induced BCS-BE crossover to occur in the two cases, respec 08
tively.

The curves of Fig. 2 have been drawn cautiously, up to
values of|V|/V, for which the condition|u|<k3/(2m) is
satisfied. This condition avoids, in fact, instabilities of the €
system in the bosonic limit, which unavoidably occur when a
fermionic potential withfinite momentum rangg is consid-
ered, and are due to the boson-boson effective interactior Crossover
potential having a dominant attractive part in this case. 02|
We have verified, in particular, for the Gaussian potential
that the bosonic chemical potentiag=2u+ €, (Where g BE
is the bound-state energy of the associated two-body 0
problent) becomes negative whem|=k3/m, a behavior 0 S 10 15
that can be attributed to an overall attraction among the com: (U7t
posite bosons$with the compressibility being, however, still
positive. In this context, we mention also that the existence
of a competition between pair and quartet condensation in ¢ (a)

Fermi liquid with a finite-range attraction has recently been
investigated® 1

A related instability toward phase separatiowith the
compressibility becoming instead negajive&s been generi-
cally pointed out for the attractivéextendedl Hubbard 0.8
model on a two-dimensional square lattf¢ayhich we pass
now to examine in detail in the context of the BCS-BE cross-
over. 0.6 BCS

BCS

2
F2m

K
<)
&

I1l. TWO-DIMENSIONAL LATTICE CASE
Crossover
In this section, we examine the BCS-BE crossover for a
two-dimensional attractive Hubbard model, again addressing
specifically the role played by the particle density in driving BE
this crossover. To consider tleewave besides the-wave 0 . . —
solution, we take the fermionic potential to contain an inter- 0 0.2 0.4 0.6 0.8 1
site besides an on-site term. In addition, for thaave so- £,
lution we adopt two different single-particle dispersions, in
order to mimic the low-energy electronic band structure ob-
served for the cuprates in different doping rantfe¥as dis-
cussed in more detail below. We recall that the issue of the (b)
d-wave symmetry in the context of the BCS-BE crossover
has been discussed briefly in Ref. 21 and more extensively i{ﬂe
Refs. 11 and 22.
For this model we thus take

FIG. 3. (a) Phase diagram|||/t,n) for the swave solution of
negatived Hubbard model in two dimension&vith on-site
attraction and nearest-neighbor hopping) phase diagranieg,
kﬁ/(Zm)] for a contact potential in two dimensiorias obtained
from the available analytic solutiopn
V(k,k")=U+2V[cogk,—kg)+cogk,—ky)], (3.1 _
A. swave solution
whereV=0. In particular, wherV=0 we consider an on- The negatived Hubbard modelobtained by takingV
site attractiond <0, with the hopping in the kinetic term of =0 andU <0 in Eq.(3.1)] plays on the lattice an analogous
the fermionic Hamiltonian limited to nearest-neighbor sitesrole to the contact potential in the continuum case. For this
(which corresponds to the ordinary negatleHubbard model, the only nontrivial solution to the gap equati@®)
model?); whenV<0 we consider instead an on-site repul- [with the integration over the wave vector being now limited
sion U>0, with the hopping in the kinetic term of the fer- to the two-dimensional Brillouin zonéBZ)] has swave
mionic Hamiltonian either limited to nearest-neighbor sitessymmetry [A(k)=A,], and the dispersion relatiog(k)
or ranging over second- and third-neighbor sitekich cor- = —2t(cosk,+cosk)+nU/2—u (t>0) contains the Har-
responds to an extended attractive Hubbard model, with atree shiftnU/2.2* The corresponding|(|/t,n) “phase dia-
on-site repulsiof?). Recall that the term proportional ¥in  gram” is shown in Fig. 8), with the boundaries between
Eg. (3.1 is associated with an attraction between oppositeihe alternative(BCS, crossover, and BEegions identified
spin fermions on neighboring sites in the square lattice.  like for the continuum case. Note that the critical valug
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for which a bound state appears in the two-body=0Q) ‘ )
problem consistently vanishes for teevave solution in two [bo,bo]zg lg(k)[*(1=ny;—n_y|) (3.3
dimensions. Note also that the reentrant shape of the curve

Keépair=2m (as well as of the curvéeép,=1/m) stems  ith n,, =c/ c,,, can be regarded ascanumber provided

now from the fact that the van Hove singularity of the den-(, y<1 over the relevant set of staésThe normalization
sity of states is approached whartends to 1(half-filling).  :gndition

[Owing to the symmetry of the density of states about half-
filling, the diagram of Fig. &) is also symmetric about half-
filling.] Note finally that the crossover from the BCS to the > (Nke)=N (3.9
BE region by varying the density for fixedJ| is possible ko
only for |.U|s_2.4t, the BE and crossover regions being de-(N being the total number of fermiopsimplies that(n,,)
pressed in this case to extremely small values.of = p/> over afinite region ofk space, whenever the range of
It is interesting to compare the “phase diagram” of Fig. the sym ovek remains limited(as for the lattice caseThis
3(@) for the two-dimensional neg?twld- Hubbard model, egtriction, in turn, implies that the commutat@:3 cannot
with the “phase diagram”[eo,kg/(2m)] [in units of  pe considered as@number, as soon asis an appreciable
(ma) ~*, wherea, is again an arbitrary unit of lengfor  fraction of the unity. Note that the size of the composite
the contact potential in the two-dimensional continuum casehosons does not enter the above argument.
for which the analytic solution is also availalsfe!® This In summary, we have argued on quite general grounds
“phase diagram” is shown in Fig. (8), where now the that, to reach a satisfactory bosonic limit in the lattice case,
boundary curves withkg&pair=(27,1/m) correspond to  the conditionkgé,,;,<1/7 valid in the continuum case has
straight lines[We have verified numerically that the solu- to be supplemented by the conditiore 1.
tions to the coupled equation€.2) and (2.3) for the
negativet) Hubbard model and for the contact potential in
two dimensions coincide within a few percent whes0.1,
even for values ofU|/t of the order of some unifsNote WhenV<0 andU>0 in Eq.(3.1), ad-wave solution of
that theabsence of a threshofdr the occurrence of a bound the typeA(k)=A;(cosk,—cosky) can be considered. In this
state in two dimensions makes the density-induced BCS-BEase, we take either a nearest-neighbor dispersion relation
crossover possible even for a short-range potential, in coné(k) = — 2t(cosk,+cosk)+n(U+4V)/2— . as before (-V
trast to the behavior for a three-dimensional contact potentignode), or a second- and third-neighbor dispersion
obtained previouslycf. Fig. 1). relation  £(k)=4t’cosk, cosk,+2t"(cos X+cos X,)+n(U
A comment on the nature of the bosonic limit for large +4V)/2—u with t'>0 andt”>0 (t'-t"-V mode). In both
values of|U|/t when approaching half-filling in Fig.(8) is  cases we have included the Hartree sHfifthe latter disper-
in order at this point. For the continuum case, the limit of asion relation favors the formation of bound pairs with
“dilute” gas of composite bosons can be reached for anyd-wave symmetry at low densif,the critical valueV, (for
particle density, insofar as the range of the residual bosonig bound state to appear in the two-body problermishing
interaction (or, equivalently, the size of the composite whent”<0.%’. For the former dispersion relation limited to
bosong vanishes for large values of the fermionic interactionnearest-neighbor sites, on the other hand, a finite valig of
strength (barring the instability problem mentioned at the occurs also for the-wave solution at zero density.
end of Sec. Il. In the lattice case, instead, the lattice spacing As already mentioned, the two different single-particle
provides an additional length scale in the problem, whichdispersion relations that we have adopted are meant to mimic
makes it possible to depart from the “dilute” gas limit irre- the low-energy electronic band structure for the cuprates in
spective of the size of the composite bosons. It is, in fact, thélifferent ranges of the doping levet. Specifically, the
“overlap” of the centers of mass of the composite bosons(t’,t”) dispersion captures the small-arc features of the
which is forced by increasing the density on the lattice, toFermi surface detected in underdoped cupr&tés,for
make the usual “dilute” gas conditiokra<1 (as defined which we can interpret~ §<0.15. Thet dispersion, on the
for the continuum modglno longer representing a “dilute” other hand, reproduces the main features of the large Fermi
gas situation in the lattice case. For such a high-density gasurface and its doping dependence for nearly optimally
of composite bosons, therefore, the underlying fermionic dedoped cuprate®, provided one interpretsi~1— ¢ with
grees of freedom are expected to become significant dgain0.15< §=<0.30.
To make these arguments more quantitative, let us con- The “phase diagrams” for the-V andt’-t"-V models are
sider the following bosonlike operator: shown, respectively, in Figs(&@ and 4b), where the bound-
aries between different regions have been identified as in
Fig. 3@ 22 Note in Fig. 4a) the occurrence of a finite critical
F valueV, (V. /4t=1.83), past which the BE region develops
bo= ; g(k)ClTCtkl ' (3.2 for n=0 [V, vanishes instead in Fig(H)]. We also mention
that the BCS-like region, corresponding to small values of
|V| in Figs. 4a) and 4b), consistently supports nonvanishing
wherec/, creates a fermion with wave vectkrand spino, values of the gap\, contrary to a recent statement for the
g(k) represents the pair wave function, and the sum &isr  t-V model?? Note finally, that the density-induced BCS-BE
limited to the Brillouin zone in the lattice case. The ensuingcrossover is allowed for thg-t”-V model but not for the-V
commutator model. This finding is, in turn, consistent with our previous

B. d-wave solution
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1 : \- : This asymptotic value increases withand eventually di-
Y verges asi— 1, making thus the produdt-&,;, arbitrarily
™ CB large.[This peculiar behavior is absent for teavave solu-
08 f \\ 1 tion discussed previously, for whigf,;, is instead a mono-
ISy tonically decreasing function d¥| for any givenn. Consis-
tently, the CB region is missing in Fig.(&.] On physical
0.6 ¢ grounds, the divergence gf,;, cannot be attributed either to
c the system converging to a BCS-like regime with large over-
04 | BCS | lapping Cooper pairs or to the size of the composite bosons
’ becoming infinitely large. Rather, the divergenceépf;, is
due to the establishing afuasi-long-range-ordercorrela-
02 | Crossover tions among the composite bosons, which reside individually
on nearest-neighbor sites. Under these circumstardggs,
BE weights preponderantly the correlation between opposite-
0 , spin fermions belonging tadifferent composite bosons,
0 5 10 15 20 rather than the usual intraboson correlation. Accordingly, for
I the d-wave solution whem— 1, &,,i; no longer represents
the radius of the composite bosons in the strong-coupling
limit.
To make the above argument more quantitative, we recall
(a) the original definition ofép,;, in terms of the two-particle
] correlation functiont*®
\\\
N\ cB f drg;, (rr?
0.8 | \\\ ____________________ ggair:—i (35)
BCS f drgy, (r)
06 where
c
04 1 1 t 1
gy, (r)= F(t/fT(r)t/q(O)%(O)l!ﬁ(r))—Z
0.2 Crossover 1 T T i
= S (@l yl(0)| @) (3.6
BE :
00 5 10 1'5 20 is the pair-correlation function for opposite spin fermions
| (the last expression holding specifically for the BCS ground
IVI/at state|®)). From this definition, it appears evident that, in

principle,g; | (r) does not distinguish between opposite-spin

fermions belonging to theamepair or todifferentpairs. In
(b) practice, in the strong-coupling limg; |(r) representsthe
square of the pair wave function whenever no correlation is
established among the composite bosons; in this dagg,
®%nds to the bound-state radius, as one verifies fosthave
solution. In the case that a definite correlation is established
among the composite bosons, on the other hand,(r)
spreads over a larg@and even infinite number of lattice
assertions that the’-t"-V model might be relevant to the sites, and¢,,;, increasegand eventually divergésaccord-
underdoped range of the cuprate superconductors and thiaigly. In this caseg; (r) embodies the correlation among
the BCS-BE crossover scenario might apply to that range. different composite bosons and is totally unrelated to the pair

A comment on theadditional region at the upper-right wave function.
corner of the “phase diagrams” in Figs(a& and 4b), which The occurrence of this novel feature for ttiavave solu-
is delimited by a long-dashed line and has been identified agon is evidenced in Fig. &), where the amplitude
“correlated bosons(CB), is in order.
This region is associated with a peculiar behaviog of;; ) A(k)

for the d-wave solution as a function div| whenn ap- ¢(Rn):N; eXp{_'k'Rn}F(k) 3.7
proaches half-filling, in the sense thgf,;; does not show a
monotonic decrease for increasii\§ and converges asymp- is reported folV|/t>1 andn=1 over a grid of lattice sites
totically (when|V|— andn<1) to a finite value, which is R, (' being the total number of sitgsn this way,| #(R,)|?
larger than the lattice spacing. represents the lattice version gf (r) given by Eq.(3.6).

FIG. 4. Phase diagranj\(|/4t,n) for the d-wave solution of the
extended Hubbard model with attraction between nearest-neighb
sites in two dimensions, consideri@ nearest-neighbor ofb)
second- and third-neighbor hopping.
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FIG. 5. (@) d-wave amplitude¢(R,) over the sitesR, of a
two-dimensional square lattice, obtained for th¥ model when
|[V|/t>1 andn=1; (b) Pictorial representation of the ordering of
the composite bosons wittd-wave symmetry on the two-

dimensional square lattice whév|/t>1 andn=1.

We see from this figure that the amplitud®.7) develops
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in Eq. (3.7) alternates sign according to tdevave symme-
try, and its lattice Fourier transform

1[1-(=1™""]
¢(Rn):?—§

3.9
o (3.9

[with R,=(ny,ny) in units of the lattice spacijglecays as a
power law for increasing distance wheg+n, is an odd
integer, while it vanishes identically when+n, is an even
integer. [In contrast, for theswave solutionA (k)/E(k)
tends to a constant value whévi|/t>1 andn=1, and the
corresponding Fourier transform is a Kronecker déﬁrgyo.]

The ensuing picture bears strong resemblance with an anti-
ferromagnetic ordering on a square lattice, with opposite
spins alternating over the two interpenetrating sublattices in
which the square lattice can be partitioned. The ordering of
the composite bosori& the strong-coupling limit when ap-
proaching half-filling, as envisaged from the above consid-
erations, is shown schematically in Figbh Note that the
quasi-long-range ordernssociated with the algebraic decay
in Eq. (3.9 corresponds to a diverges,;,, even though it
does not represent a true long-range antiferromagnetic order
of the spins. Physically, such a strong correlation among
fermions with opposite spins stems from the original fermi-
onic attraction between opposite-spin fermions residing on
nearest-neighbor sites, which corresponds to the f@mh

of the potential. It is for these reasons that we have identified
the region in the upper-right corner of Figsagand 4b)
(delimited by a long-dashed lineas “correlated bosons”
rather than BCS-like, even thougtr¢,,i; becomes defi-
nitely larger than 2r in this region®®

Another relevant difference of thel-wave from the
s-wave solution, is the fact that in the BE region of Fig&)4
and 4b) (—2u) doesnot reduce to the bound-state energy
€, of the associated two-body problem, unlessO strictly.

This additional feature of theé-wave solution can also be
associated with the augmented correlation among the com-
posite bosons with increasing, as discussed previously.
Such a correlation makes, in fact, the energy required to
extract two fermions from the system different from the en-
ergy required to break up singlecomposite boson in isola-
tion, owing to the additional correlation energy among the
composite bosons.

The relevance of the correlation energy among the com-
posite bosons is also suggested by the behavior of the
“bosonic” chemical potentiajug=2u + €4 in the BE region
(delimited by n<0.016, irrespective of the single-particle

clear structures near the lattice diagonals, thus eStab”Shirtﬂspersiom In this low-density region one findgg=(U

definite correlations among opposite-spin fermions belong-,

ing to different composite bosoRS.

2V)n. When 0<U<2|V|, ug is negative, corresponding
to an effective averagattraction between the composite

This behavior can also be checked analytically, making,,q,ng The compressibility of the system is also negative at

use of the fact that at half filling. equals the Hartree shift i< oder  thus
(U+4V)/2 and thus the single-particle dispersig(k) is ]
negligible in comparison tdA (k)| when|V|/t>1 [barring
values ofk for which A(k) vanishes by symmettyIn this

case

A(k) A(k) 1
F(k) = m = Esgr(coskx— cosk,)

(3.9

indicating a tendency toward phase
separatiort WhenU>2|V|, on the other handyg and the
compressibility are both positive; in this case, the effective
bosonic average interaction would bepulsive with an in-
creasing repulsion between the composite bosoihg|agnd

U) increases. This situation has to be contrasted with the
negativet Hubbard model, for which the composite bosons
become asymptotically free dg/|— .2
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IV. CONCLUDING REMARKS continuum case was associated with the reentrant $lcape

In this paper we have examined how the particle densitynOt be satisfied. Consequently, no reentrant shape of the

. . curve delimiting the BCS-like region is expected for the lat-
|anuenqes_th§e BCS'BE crossover, by analyzmg se_veral pret?ce case. The occurrence of the reentrant shape, however
of fermionic interaction potentials both in three dlmensmnsmay noté priori be excluded when considering an7interac- '

(continuum caseand in two dimensiongcontinuum and lat- . : - . . . ;
tice cases We have reached the conclusion that the finitet|on potential extending over distant neighbors in the lattice,

- hus decreasing, accordingly. In any case, the occurrence
range of the potential as well as the absence of a threshoL an intrinsic upper bound on the densignd thus ork)

for a bound state to occur in the associated two-body prob- . . . .
I(em) favor quite generally the density-induced crosso?//ee. will make the BCS-like region to disappear for large enough

In particular, for the continuum case we have verified thatgéesr?étllzogr:g;gcgtrh’ thus preventing the density-induced

in three dimensiongwhere a finite threshold exists in the We have also found that the presence of an upper bound

two-body problem it is the finite range of the potential to on the density in the lattice case and the finite size of the

make the density-induced crossover possible, while in twg . L -
. . ' composite bosons for thd-wave solution induce definite
dimensions the absence of a threshold suffices to the purpose . . - i
S . .- —correlations among the composite bosons, giving rise to a

even when a zero-range potential is considered. In addition : . .
. . rhagnetic correlated state near half-filling. The simultaneous

for the continuum case we have argued that the density-

induced crossove(for a finite-range potentialoccurs at ar- presence of superconducting off-diagonal long-range order

) ; . . and of antiferromagnetic correlations without long-range or-
bitrary values of the interaction strength, owing to the fact . .

7o . . .- der, which we have found for thetwave solution, represents
that, in this case, the particle density can be augmented with- . . .
out bound per sean appealing result, in the light of the current phenom-

o . . . enology of the cuprate superconductors. The interesting
For the lattice case, we have considered two dlmen5|onsh sics that has emeraed for thavave solution in the lat-
only and investigated, alternatively, the absence or presence y 9

: ICe case may then provide a general framework for future

of a threshold, depending on the symmetry of the gap param- o X
eter and on the shape of the single-particle dispersion relgnvestigations on the BCS-BE crossover, for instance, con
Sidering finite-temperature effects and going beyond the

tion. We have found that the absence of a threshold definitel ; SN ) .
aEl%ean-ﬂeld approximation. In this respect, facing a proper

favors the density-induced BCS-BE crossover, and th reatment of the residual boson-boson interaction in the BE

spreading the range of the potential on the lattice makes three ion seems to be unavoidable. not onlv in the three-
density-induced BCS-BE crossover to occur over a wider 9 ' Y

density range. In the presence of a thresiHaldeast for the dlmen5|onf'il co_ntmuum cas(e_ls shqwn alrea_dy in Ref. 17
o : ) . . ut especially in the two-dimensional lattice case for the
specific potential extending over nearest-neighbor sites tha

we have considergdon the other hand, the density-induced "wave solution, where the boson-boson interaction gets
considerably enhanced.

BCS-BE crossover turned out not to be possible, owing es- Finally, we point out that the need of a reduced spatial

sentially to the absence of the reentrant shape of the Curv(%mensionality and of a finite range of the potential, which

‘?‘e"'.””'“”g the BCS. like region. This situation contrasts our e have found for the density-induced BCS-BE crossover to
finding for the continuum case in the presence of a threshold. .
) ; : occur, matches the generic features observed for the cuprate

In this respect, an important difference between the con- .
. . superconductors and strengthen accordingly the BCS-BE
tinuum and lattice cases appears to be the occurrence of an : . 2 :
crossover as a possible scenario for describing the evolution

intrinsic upper value for the densitin the lattice case, at from overdoped to underdoped cuprates
least when one considers a simple band only. In this case, the P P P '

Fermi wave vectokg cannot exceed an upper bound of the
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