35 research outputs found

    Adiabatic steering and determination of dephasing rates in double dot qubits

    Full text link
    We propose a scheme to prepare arbitrary superpositions of quantum states in double quantum--dots irradiated by coherent microwave pulses. Solving the equations of motion for the dot density matrix, we find that dephasing rates for such superpositions can be quantitatively infered from additional electron current pulses that appear due to a controllable breakdown of coherent population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Adiabatic Transfer of Electrons in Coupled Quantum Dots

    Full text link
    We investigate the influence of dissipation on one- and two-qubit rotations in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with adiabatically varying parameters. For weak dissipation, we solve a master equation, compare with direct perturbation theory, and derive an expression for the `fidelity loss' during a simple operation that adiabatically moves an electron between two coupled dots. We discuss the possibility of visualizing coherent quantum oscillations in electron `pump' currents, combining quantum adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the role of intermediate charge states has been discussed recently, we apply our formalism to calculate the fidelity loss due to charge tunneling between two dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    Measurement of the open-charm contribution to the diffractive proton structure function

    Get PDF
    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.Comment: 35 pages, 11 figures, 6 table

    The delivery of personalised, precision medicines via synthetic proteins

    Get PDF
    Introduction: The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements. The Problem: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities. The Solution: The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed

    Predictive factors for masticatory performance in Duchenne muscular dystrophy

    No full text
    Item does not contain fulltextPatients with Duchenne muscular dystrophy (DMD) report masticatory and swallowing problems. Such problems may cause complications such as choking, and feeling of food sticking in the throat. We investigated whether masticatory performance in DMD is objectively impaired, and explored predictive factors for compromised mastication. Twenty-three patients and 23 controls filled out two questionnaires about mandibular function, and underwent a clinical examination of the masticatory system and measurements of anterior bite force and masticatory performance. In the patients, moreover, quantitative ultrasound of the tongue and motor function measurement was performed. The patients were categorized into ambulatory stage (early or late), early non-ambulatory stage, or late non-ambulatory stage. Masticatory performance, anterior bite force and occlusal contacts were all reduced in the patient group compared to the controls (all p < 0.001). Mastication abnormalities were present early in the disease process prior to a reduction of motor function measurement. The early non-ambulatory and late non-ambulatory stage groups showed less masticatory performance compared to the ambulatory stage group (p < 0.028 and p < 0.010, respectively). Multiple linear regression analysis revealed that stage of the disease was the strongest independent risk factor for the masticatory performance (R(2) = 0.52). Anterior bite force, occlusal contacts and masticatory performance in DMD are severely reduced

    Evaluation of the β

    No full text
    The neutron-proton isovector pairing effect on the beta-plus decay log ft values is studied in typical mirror N≃Z nuclei. The log ft values are calculated by including or not the isovector pairing before and after a particle-number projection using the Sharp-Bardeen-Cooper-Schrieffer (SBCS) method. It is shown that the values obtained after projection in the isovector pairing case are the closest ones to experimental data. The effect of the deformation of the mother and daughter nuclei on the log ft is also studied
    corecore