20 research outputs found

    A Rifted Margin Origin for the Crescent Basalts and Related Rocks in the Northern Coast Range Volcanic Province, Washington and British-Columbia

    Get PDF
    The remarkable early to middle Eocene volcanic sequence of the Crescent Formation exposed on the Olympic Peninsula consists predominantly of tholeiitic to minor transitional alkaline basalts with sparse sedimentary interbeds. A composite section measured in the vicinity of the Dosewallips River includes 8.4 km of pillowed to massive submarine basalts overlain by 7.8 km of subaerial flows. An upper limit of about 48 Ma on the age of the Crescent basalts is indicated by faunal assemblages in sediments interbedded with the uppermost flows in the sequence and a circa 50 Ma 40Ar/39Ar age on a leucogabbro from the presumably correlative Bremerton Igneous Complex. Stratigraphically controlled samples collected from throughout the Crescent basalt sequence show that two distinctly different chemical types exist. The lower part of the sequence originated from a relatively depleted mantle course resembling normal (N) to enriched (E)-MORB. The upper flows have a chemistry resembling E-MORB to oceanic island tholeiites. This difference could be due to either variable metasomatism of a single source domain, or influx of a separate enriched-mantle source component during the extrusion of the upper part of the sequence. Paleomagnetic measurements indicate that the Crescent basalts have not been significantly rotated, nor translated northwards since their extrusion. Paleotectonic reconstructions show that formation of the Crescent basalts and the Coast Range volcanic province as a whole coincided with a marked increase in the velocity of oblique convergence of the Kula plate with North America at about 60 Ma. Other geologic, geochemical, and paleomagnetic data are consistent with the interpretation that extrusion occurred in a basin or series of basins formed by a rift system along the continental margin of North America. Rifting might have been initiated by the influence of a hotspot, an increase in the rate of oblique convergence, or the kinematic effects of the Kula-Farallon ridge as it migrated along the margin. If extrusion is related to the passage of the triple junction, then the Coast Ranges can be considered to be an important tectonic marker for early to middle Eocene plate reconstructions

    Paleomagnetism and Tectonics of the Crescent Formation, North Olympic Mountains, Washington

    Get PDF
    A stable prefolding magnetization has been discovered in pillow basalts of the Eocene lower Crescent For­mation of the northem Olympic Mountains. The curved outcrop pattern of the Crescent Formation has been the target of several unsuccessful studies to test for oroclinal bending. The success of this study is due, in part, to the development of a small-diameter electric core drill for sampling the fractured rims of basalt pillows. Thermal demagnetization produced stable endpoints by 580°C in 12 of the 34 sites sampled (large within-site scatter was common in the remaining sites). Among the accepted sites, within-site scatter was small and correction for bedding tilt significantly reduced the scatter between sites. The mean paleomagnetic pole for newly sampled pillow basalts (86.4° north latitude, 170.0° east longitude, A95=16.5°) is indistinguishable from the early to mid­dle Eocene pole expected for North America. Including previous results from sites in subaerial basalt of the upper Crescent Formation in and near the eastem Olympic Mountains results in a more regional paleomagnetic pole (80.7° north latitude, 192.0° east longitude, A95 =8.0°, N=46) that shows no significant rotation (0.8° ± 14.4°) or poleward displacement (-3.6 ± 8.5). Analysis of the magnetic mineralogy suggests that the remanence is early, probably primary. The pole, therefore, should be valid for tectonic interpretation of the region. A cir­cular distribution of virtual geomagnetic poles after correction for bedding tilt supports the hypothesis that the northem Crescent Formation experienced deformation due to the rise, in a domelike fashion, of the sediments of the Olympic Core terrane. Erosion of a partial dome open to the west could have produced the curvature seen in the outcrop pattern of the Crescent Formation. The lack of significant rotation of the northernmost Coast Ranges contrasts with the net clockwise rotation seen to the south. The difference could be that irrotational northward translation (paleomagnetically insignificant yet geologically important), driven by oblique conver­gence, was accommodated by the north-south trending strike-slip faults to the east of the Olympic Mountains

    EMIC wave events during the four GEM QARBM challenge intervals

    Get PDF
    This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM “Quantitative Assessment of Radiation Belt Modeling” focus group: March 17‐18 (Stormtime Enhancement), May 31‐June 2 (Stormtime Dropout), September 19‐20 (Non‐storm Enhancement), and September 23‐25 (Non‐storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near‐equatorial magnetosphere and from several arrays of ground‐based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low‐altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near‐equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the REPT and MagEIS instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~ 4.0. In three other cases identifiable smaller and more short‐lived dropouts appeared, and in five other cases these waves evidently had little or no effect

    Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs

    Get PDF
    Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically‐induced currents (GICs) have used data from the northern hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx|> 900 nT and|dB/dt|> 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high latitude regions (65‐80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From 1 to 3 different isolated MPEs localized in corrected geomagnetic latitude were observed during 3 pre‐midnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended post‐midnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative IMF Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for 3 of the 4 events; neither model provided a good fit for the pre‐midnight event that occurred near vernal equinox

    GMAG:an open-source python package for ground-based magnetometers

    No full text
    Abstract Magnetometers are a key component of heliophysics research providing valuable insight into the dynamics of electromagnetic field regimes and their coupling throughout the solar system. On satellites, magnetometers provide detailed observations of the extension of the solar magnetic field into interplanetary space and of planetary environments. At Earth, magnetometers are deployed on the ground in extensive arrays spanning the polar cap, auroral and sub-auroral zone, mid- and low-latitudes and equatorial electrojet with nearly global coverage in azimuth (longitude or magnetic local time—MLT). These multipoint observations are used to diagnose both ionospheric and magnetospheric processes as well as the coupling between the solar wind and these two regimes at a fraction of the cost of in-situ instruments. Despite their utility in research, ground-based magnetometer data can be difficult to use due to a variety of file formats, multiple points of access for the data, and limited software. In this short article we review the Open-Source Python library GMAG which provides rapid access to ground-based magnetometer data from a number of arrays in a Pandas DataFrame, a common data format used throughout scientific research
    corecore