21 research outputs found

    Control over Multi-Scale Self-Organization-Based Processes under the Extreme Tribological Conditions of Cutting through the Application of Complex Adaptive Surface-Engineered Systems

    Get PDF
    This paper features a comprehensive analysis of various multiscale selforganization processes that occur during cutting. A thorough study of entropy production during friction has uncovered several channels of its reduction that can be achieved by various selforganization processes. These processes are (1) self-organization during physical vapor deposition PVD coating deposition on the cutting tool substrates; (2) tribofilm formation caused by interactions with the environment during operation, which consist of the following compounds: thermal barriers; Magnéli phase tribo-oxides with metallic properties at elevated temperatures, tribo-oxides that transform into a liquid phase at operating temperatures, and mixed action tribo-oxides that serve as thermal barriers/lubricants, and (3) multiscale selforganization processes that occur on the surface of the tool during cutting, which include chip formation, the generation of adhesive layers, and the buildup edge formation. In-depth knowledge of these processes can be used to significantly increase the wear resistance of the coated cutting tools. This can be achieved by the application of the latest generation of complex adaptive surface-engineered systems represented by several state-of-the-art adaptive nano-multilayer PVD coatings, as well as high entropy alloy coatings (HEAC)

    On the Use of the Theory of Critical Distances with Mesh Control for Fretting Fatigue Lifetime Assessment

    Get PDF
    This work analyses the viability of the theory of critical distances (TCD) using mesh control for fretting fatigue lifetime assessment. More than seven hundred sets of simulations were performed by taking seventy different experimental tests reported previously in the literature. The outcome of the present study suggests that the TCD mesh control method can be extended to fretting fatigue problems by the reasonable assumption of setting the right element size proportional to critical distance. In this study, a significant computational time reduction of up to 97% was obtained. Thus, this study provides a simple method to design complex 3D industrial components subjected to fretting fatigue phenomena using finite element analysis efficiently without requiring complex remeshing techniques

    Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    Get PDF
    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/ dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment
    corecore