905 research outputs found

    Comparing index-based vulnerability assessments in the Mississippi Delta: Implications of contrasting theories, indicators, and aggregation methodologies

    Get PDF
    There are many index-based approaches for assessing vulnerability to socio-natural hazards with differences in underlying theory, indicator selection and aggregation methodology. Spatially explicit output scores depend on these characteristics and contrasting approaches can therefore lead to very different policy implications. These discrepancies call for more critical reflection on index design and utility, a discussion that has not kept pace with the impetus for vulnerability assessments and respective index creation and application following the Hyogo Framework for Action 2005–2015. Comparing index outputs is an effective approach in this regard. Here, the Social Vulnerability Index (SoVI®) and the vulnerability component of the Global Delta Risk Index (GDRI) are applied at census tract level in the Mississippi Delta and visually and quantitatively compared. While the SoVI® is grounded in the hazard/risk research paradigm with primarily socio-economic indicators and an inductive principal component methodology, the GDRI incorporates advancements from sustainability science with ecosystem-based indicators and a modular hierarchical design. Maps, class rank changes, and correlations are used to assess the convergence and divergence of these indexes across the delta. Results show that while very different theoretical frameworks influence scores through indicator selection, methodology of index calculation has an even greater effect on output. Within aggregative methodology, the treatment of inter-indicator correlation is decisive. Implications include the need for an increased focus on index methodology and validation of results, transparency, and critical reflection regarding assessment limitations, as our results imply that contradictory risk reduction policies could be considered depending on the assessment methodology used

    The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory

    Full text link
    We report on the design, deployment, and first results from a scintillation detector deployed at the Murchison Radio-astronomy Observatory (MRO). The detector is a prototype for a larger array -- the Square Kilometre Array Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays with the Murchison Widefield Array and the low-frequency component of the Square Kilometre Array. The prototype design has been driven by stringent limits on radio emissions at the MRO, and to ensure survivability in a desert environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize the detector response while accounting for the effects of temperature fluctuations, and calibrate the sensitivity of the prototype detector to through-going muons. This verifies the feasibility of cosmic ray detection at the MRO. We then estimate the required parameters of a planned array of eight such detectors to be used to trigger radio observations by the Murchison Widefield Array.Comment: 17 pages, 14 figures, 3 table

    Plasma biomarkers outperform echocardiographic measurements for cardiovascular risk prediction in kidney transplant recipients: results of the HOME ALONE study

    Get PDF
    Background Since kidney transplant recipients (KTRs) have a high cardiovascular disease burden, adequate risk prediction is of importance. Whether echocardiographic parameters and plasma biomarkers, natriuretic peptides [N-terminal pro-B-type natriuretic peptide (NT-proBNP)] and troponin T provide complementary or overlapping prognostic information on cardiovascular events remains uncertain. Methods The prospective Heterogeneity of Monocytes and Echocardiography Among Allograft Recipients in Nephrology (HOME ALONE) study followed 177 KTRs for 5.4 ± 1.7 years. Predefined endpoints were hospitalization for acute decompensated heart failure or all-cause death (HF/D) and major atherosclerotic cardiovascular events or all-cause death (MACE/D). At baseline, plasma NT-proBNP, plasma troponin T and echocardiographic parameters [left atrial volume index, left ventricular (LV) mass index, LV ejection fraction, and LV filling pressure] were assessed. Results Among all echocardiographic and plasma biomarkers measured, only NT-proBNP was consistently associated with HF/D in univariate and multivariate {third versus first tertile: hazard ratio [HR] 4.20 [95% confidence interval (CI) 1.02–17.27]} analysis, and only troponin T was consistently associated with MACE/D in univariate and multivariate [third versus first tertile: HR 8.15 (95% CI 2.75–24.18)] analysis. Conclusion Our data suggest that plasma biomarkers are robust and independent predictors of heart failure and atherosclerotic cardiovascular events after kidney transplantation, whereas standard echocardiographic follow-up does not add to risk prediction

    Rapid Communication with a “P300” Matrix Speller Using Electrocorticographic Signals (ECoG)

    Get PDF
    A brain–computer interface (BCI) can provide a non-muscular communication channel to severely disabled people. One particular realization of a BCI is the P300 matrix speller that was originally described by Farwell and Donchin (1988). This speller uses event-related potentials (ERPs) that include the P300 ERP. All previous online studies of the P300 matrix speller used scalp-recorded electroencephalography (EEG) and were limited in their communication performance to only a few characters per minute. In our study, we investigated the feasibility of using electrocorticographic (ECoG) signals for online operation of the matrix speller, and determined associated spelling rates. We used the matrix speller that is implemented in the BCI2000 system. This speller used ECoG signals that were recorded from frontal, parietal, and occipital areas in one subject. This subject spelled a total of 444 characters in online experiments. The results showed that the subject sustained a rate of 17 characters/min (i.e., 69 bits/min), and achieved a peak rate of 22 characters/min (i.e., 113 bits/min). Detailed analysis of the results suggests that ERPs over visual areas (i.e., visual evoked potentials) contribute significantly to the performance of the matrix speller BCI system. Our results also point to potential reasons for the apparent advantages in spelling performance of ECoG compared to EEG. Thus, with additional verification in more subjects, these results may further extend the communication options for people with serious neuromuscular disabilities

    Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow

    Get PDF
    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    WSClean : an implementation of a fast, generic wide-field imager for radio astronomy

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.Peer reviewedFinal Published versio

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS
    corecore