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Highlights 16 
 17 

• Aggregation methodology of index-based vulnerability assessments can influence scores 18 
more than theory and indicator choice 19 

• Improvement of aggregation methodology through validation has not kept pace with index 20 
creation 21 

• Such assessments must acknowledge limitations in design and confidence in results to avoid 22 
misguided policy decisions 23 

 24 

Abstract  25 

There are many index-based approaches for assessing vulnerability to socio-natural hazards with differences in 26 

underlying theory, indicator selection and aggregation methodology. Spatially explicit output scores depend on 27 

these characteristics and contrasting approaches can therefore lead to very different policy implications. These 28 

discrepancies call for more critical reflection on index design and utility, a discussion that has not kept pace with 29 

the impetus for vulnerability assessments and respective index creation and application following the Hyogo 30 

Framework for Action 2005-2015. Comparing index outputs is an effective approach in this regard. Here, the 31 

Social Vulnerability Index (SoVI®) and the vulnerability component of the Global Delta Risk Index (GDRI) are 32 

applied at census tract level in the Mississippi Delta and visually and quantitatively compared. While the SoVI® is 33 

grounded in the hazard/risk research paradigm with primarily socio-economic indicators and an inductive 34 

principal component methodology, the GDRI incorporates advancements from sustainability science with 35 



ecosystem-based indicators and a modular hierarchical design. Maps, class rank changes, and correlations are 36 

used to assess the convergence and divergence of these indexes across the delta. Results show that while very 37 

different theoretical frameworks influence scores through indicator selection, methodology of index calculation 38 

has an even greater effect on output. Within aggregative methodology, the treatment of inter-indicator 39 

correlation is decisive. Implications include the need for an increased focus on index methodology and validation 40 

of results, transparency, and critical reflection regarding assessment limitations, as our results imply that 41 

contradictory risk reduction policies could be considered depending on the assessment methodology used.  42 

Keywords 43 
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1. Introduction 45 

Index-based approaches have become increasingly recognized for their ability to spatially synthesize multi-46 

dimensional concepts like vulnerability (Beccari, 2016). Identifying, including and emphasizing vulnerable 47 

populations is central to guidelines for the preparation and fulfillment of National Adaptation Plans (NAPs) and 48 

Nationally Determined Contributions (NDCs); the latter of which is a core element of the Paris Agreement on 49 

climate change (United Nations, 2015). Moreover, the Hyogo Framework for Action 2005-2015 (HFA; UNISDR, 50 

2005) explicitly called for the creation of risk and vulnerability indicators and subsequent utilization of their results 51 

for informing decision-makers. Since the inception of the HFA, and continuing with the Sendai Framework for 52 

Disaster Risk Reduction (SFDRR) 2015-2030 (UNISDR, 2015), such index-based assessments have been applied in 53 

many different contexts and at different scales, each founded either implicitly or explicitly on epistemological 54 

frameworks with potentially distinct approaches (Birkmann, 2013; Schneiderbauer et al., 2017). Beccari (2016) 55 

provides a list of current relevant index-based approaches, with some of the more prominent that explicitly 56 

consider vulnerability being e.g. the World Risk Index (Heintze et al., 2018), the Disaster Risk Index (Peduzzi et al., 57 

2009), the Index for Risk Management (InfoRM) (De Groeve et al., 2014), Social Vulnerability Index (SVI) (Flanagan 58 

et al., 2011), and the Social Vulnerability Index (SoVI®) (Cutter et al., 2003). 59 

 Along with the theories behind them, assessments also contrast on the basis of indicator selection and calculation 60 

methodology. Because the concept of vulnerability is both user-defined and latent, a range of assessment 61 

methods and variation in index results should be expected. Despite this, due to the importance of operationalizing 62 



vulnerability as a first step towards its informed reduction, research is needed to scrutinize and improve 63 

assessments. Although the HFA and the SFDRR also encourage the improvement of methods to better understand 64 

risk, including efforts to standardize assessments (UNISDR, 2005), this mandate has failed to keep pace with the 65 

plethora of new approaches to index-based assessments. 66 

There is a lack of studies evaluating the sensitivity and validity of vulnerability and risk indexes (Beccari, 2016; 67 

Rufat et al., 2015; Rufat et al., 2019). It should be noted that while this study focuses on technical “desktop” 68 

validation, user validation is also understudied, and such feedback can provide direct information regarding index 69 

utility (Wannewitz et al., 2016). Further, there have been extensive qualitative evaluations of indexes that can 70 

contribute to validity (e.g. Gall, 2007). However, thus far, technical validation attempts have generally been 71 

carried out (1) using the data or indicators found within the same indexes by disaggregating, adjusting, and 72 

carrying out statistical tests (Cutter et al., 2013; Jones and Andrey, 2007; Schmidtlein et al., 2008; Tate, 2012; 73 

Tate, 2013); (2) by external means using impact or loss and damage data as a proxy for vulnerability (Brooks et 74 

al., 2005; Burton, 2015; Fekete, 2009; Hagenlocher and Castro, 2015; Peduzzi et al., 2009; Rufat et al., 2019; Yoon, 75 

2012); or (3) by triangulating input or output against expert consultancy (Bohle et al., 1994; Brooks et al., 2005; 76 

Hagenlocher et al., 2013; Kienberger et al., 2009; Peduzzi et al, 2009; Polsky et al., 2007; Schmidtlein et al., 2008). 77 

While the adequacy of methods for validation is dependent on the intended scope and aim of an assessment, the 78 

approaches described carry a number of inherent limitations evidenced by past research. 79 

An important contribution has been made by analyses that validate indexes internally (using their own component 80 

parts) (Schmidtlein et al., 2008) as well as differential weighting and indicator selection (Garriga and Foguet, 2010; 81 

Saisana et al., 2005; Tate, 2012). However, one weakness of this approach is that claims based on results must be 82 

restricted to sensitivity or reliability. Studies that equate the presence and intensity of vulnerability to figures 83 

describing loss and damage are also limited by several factors. For example, difficulties arise from the inability to 84 

account for the wide spectrum of potential negative short and long-term effects experienced from socio-natural 85 

hazards (Morrissey and Oliver-Smith, 2013; Rufat et al., 2019) resulting from the lack of relevant or reliable data 86 

(Gall et al., 2009). Such studies must also control for potential confounding factors like differential exposure that 87 

contribute to impacts (Cutter and Finch, 2008; Fekete, 2019). Finally, the use of survey data and input from 88 

experts for assessing and increasing the validity of vulnerability indexes can justifiably increase confidence in 89 

results (Emrich, 2005) but also entails inherent weaknesses. In addition to the need for sufficient resources and 90 



targeting of appropriate experts (Brooks et al., 2005), the creation of an index is itself an implicit recognition of 91 

the difficulties of making representative estimations regarding a multi-dimensional and spatio-temporally 92 

dynamic concept.  93 

Comparing index outputs and determining the underlying reasons behind potential disparities can supplement 94 

validation efforts and avoid these shortcomings. Lacking an established external measure, identifying spatial 95 

convergence or divergence can only be regarded as a means to increase or decrease confidence in output. 96 

However, examining actual index results can also reveal index particularities and the relative importance of 97 

specific theoretical and methodological choices. There is a lack of research that analyzes hypothesized differences 98 

in high spatial resolution index outputs resulting from both contrasting epistemological frameworks and 99 

methodological construction in the same study area.  100 

Such a comparison was carried out in the present study using United States census tract (sub-county) units in the 101 

Mississippi Delta, a region rich in history characterized by intertwined social and environmental diversity (Kemp 102 

et al., 2014). Scores from the SoVI® (Cutter et al., 2003), a well-known and widely-implemented index with an 103 

inductive methodology (Tate, 2012) for assessing social vulnerability, were compared to those of a  hierarchically-104 

designed index centered on social-ecological system (SES) vulnerability, the Global Delta Risk Index (GDRI) 105 

(Hagenlocher et al., 2018).  106 

While the SoVI and GDRI conceptualize vulnerability differently, they are comparable based on their ultimate 107 

shared aim to reduce the potential negative impacts of natural hazard events by providing spatially explicit 108 

vulnerability scores to relevant stakeholders. Furthermore, they exist within the same larger research paradigm 109 

primarily concerned with risk to human well-being, although the GDRI also includes ecosystem services as a 110 

conduit in coupled social-ecological systems (Anderson et al., 2019). These particular indexes were chosen for 111 

comparison for several reasons. Firstly, their divergence in underlying theory allows for scrutiny and broader 112 

reflection across a spectrum of possible differences in such index-based approaches. Furthermore, because the 113 

contrast in theory should be reflected in index output, this divergence provides a comparative baseline for 114 

interpreting changes in scores resulting from indicator selection and aggregation methodology. The SoVI’s use of 115 

PCA and the GDRI’s hierarchical design represents another divide in index-based vulnerability approaches, 116 

therefore also contributing to the utility of comparing results from these indexes and determining their effects. 117 



Lastly, differences are maximized and results more useful given that the SoVI is a well-established index while the 118 

GDRI was first introduced in Hagenlocher et al. (2018).  119 

This study thus aims to provide a basis of empirical evidence to reflect upon theoretical and methodological 120 

choices in index-based vulnerabilty assessments while employing a comparative methodology to support index 121 

validity. It is hypothesized that the final output scores from each index show significant spatial differences 122 

resulting primarily from their contrasting conceptualizations of vulnerability. Ecosystem-based indicators from 123 

the GDRI should contribute to producing a different spatial pattern in final output scores if they are capturing a 124 

unique concept. Likewise, a high degree of similarity in purely social vulnerability scores would suggest increased 125 

confidence in output based on the concept of convergent validity. This is the idea that scores from a measure 126 

should correlate to those of another measure if the underlying construct is shared (Privitera, 2014).  127 

However, the effect of contrasting aggregation methodologies when comparing the same vulnerability constructs 128 

in terms of output scores has also been demonstrated in previous studies (e.g. Burton, 2015; Cutter et al., 2014; 129 

Fernandez et al., 2017; Tate, 2012, 2013; Willis and Fitton, 2016). Because the GDRI employs a hierarchical and 130 

modular design for calculating scores and contains a purely social vulnerability component, the influence of theory 131 

and indicator selection can be isolated through a comparison with the SoVI. To control for theory, however, the 132 

hierarchical design of the GDRI was also applied to the SoVI indicators to create a hypothetical SoVIG index and 133 

outputs compared.  134 

The influence of differences in conceptualization of vulnerability (affecting indicator selection) as well as 135 

aggregation methodologies between the indexes on output scores was tested primarily on the basis of changes 136 

in output rank classes of the census tracts using quantile and standard deviation classifications. Although 137 

correlations were also employed to triangulate results, differences in class rankings more directly translate to the 138 

ultimate policy messages of the indexes. By determining the influence of theory and calculation methodology in 139 

relation to output scores, the relative importance of these index design features, their implications, as well as 140 

insights into unique index characteristics are enabled.  141 

2. Conceptualizing and operationalizing vulnerability: the SoVI and the GDRI 142 

Contrasting theoretical underpinnings inform differences in operationalization of vulnerability, thematic indicator 143 

selection and aggregative methodology between the SoVI and GDRI (Table 1). These differences are summarized 144 



below and detailed in the following subsections in order to provide background information on the indexes (2.1 145 

and 2.2). 146 

Table 1. Comparison of main characteristics between the SoVI® and vulnerability component of the GDRI. 147 

Index Characteristics SoVI GDRI (vulnerability) 
Introduction Cutter et al., 2003 Hagenlocher et al., 2018 

Conceptual framework Hazards-of-Place Model               
(Cutter, 1996) 

Delta-SES Framework (Sebesvari et al. 
2016) 

Focus Social System Social-ecological system 

Operationalization of 
vulnerability 

Social vulnerability (no further 
disaggregation) 

Vulnerability = social susceptibility + 
ecosystem susceptibility + lack of 

capacities (coping/adaptive) + lack of 
ecosystem robustness 

Hazards considered1 
Universal for environmental 

hazards 

Hurricane (wind), flooding, coastal 
flooding (storm surge), drought, 

salinity intrusion (also possible to 
extend to other hazards) 

Indicator data Primarily Census data Indicator library (varying sources) 

Aggregative methodology 
PCA with regression scores into 

additive model 
Modular and hierarchical  

Output(s) 
Final SoVI scores and 

component scores from PCA 

Disaggregation possibilities based on: 
single vs. multi-hazard, social vs. 

ecosystem, susceptibility vs. coping 
capacity (and combinations thereof) 

 148 

 149 

2.1 The Social Vulnerability Index (SoVI) 150 

The SoVI, introduced by Cutter et al. (2003), is built upon the theoretical background of the Hazards of Place 151 

Framework (Cutter, 1996). This framework has its roots primarily in the hazard/risk research paradigm (Cutter, 152 

1996). From this perspective, vulnerability is seen most often as a phenomenon that, beginning with a stressor, 153 

helps determine negative impacts and human response (Adger, 2006; Eakin and Luers, 2006). Cutter et al. (2003, 154 

p. 243) describe the social context included in the framework as, “community experience with hazards, and 155 

community ability to respond to, cope with, recover from, and adapt to hazards, which in turn are influenced by 156 

economic, demographic, and housing characteristics.” 157 

                                                           
1 Hazards considered by GDRI methodology are dependent on study area and data availability. Those shown here were 
included in this study. 



The SoVI and its associated conceptual framework represent one of the most common sub-national vulnerability 158 

assessment approaches (Oliver-Smith et al., 2012). Although the SoVI is relevant to any hazard type because of 159 

indicators that largely represent social disadvantage (Jones and Andrey, 2007), it has also been used in numerous 160 

hazard-specific studies to assess vulnerability to drought (Emrich and Cutter, 2011; Oxfam America, 2009), 161 

flooding (Azar and Rain, 2007; Fekete, 2009), sea-level rise (Emrich and Cutter, 2011; Oxfam America, 2009), 162 

coastal erosion (Boruff and Cutter, 2007), and hurricanes (Chang, 2005; Emrich and Cutter, 2011; Myers et al., 163 

2008; Oxfam America, 2009). The SoVI has also been applied  at diverse scales in countries around the world, 164 

albeit with adjusted indicator sets (Armas and Gavris, 2013; Chen et al. 2013;  Guillard-Gonçalves et al., 2015; 165 

Hummel et al., 2016). The ubiquity of the SoVI is also evidenced by the wide spectrum of specific purposes for 166 

which it has been employed. For example it has acted as a means of legally allocating disaster relief funds (Emrich 167 

et al., 2016) such as in the aftermath of unprecedented floods in 2015 in South Carolina (U.S.A.) (SCDRO, 2015), 168 

to help explain differential rates of recovery in New Orleans post-Katrina (Finch et al., 2010), and to assist the U.S. 169 

Army Corps of Engineers to consider social vulnerability in work historically centered around physical flood 170 

protection measures (Cutter et al., 2013). 171 

Theoretical foundations are reflected in the 27 socio-economic indicators for census tract level analyses that 172 

emphasize factors such as gender, race and ethnicity, age, education, and wealth (Cutter and Morath, 2013); a 173 

full list of which is provided (Supplementary Material 1). Along with the focus on social disadvantage represented 174 

by its indicators, another defining feature and contribution of the SoVI to vulnerability research is its 175 

methodological design (Fig. 1), which has become one of the most widely used and cited in disaster risk research 176 

(Beccari, 2016; Rufat et al., 2019; Yoon, 2012).  177 



 178 

Fig. 1. SoVI design and aggregation flow from the top downwards. 179 
 180 

Tate (2012) describes the SoVI approach as inductive because components emerge from input indicator data Z-181 

scores through PCA. Z-scores standardize the data by indicating how many standard deviations an observation is 182 

either above or below the mean (Dunning and Durden, 2011). PCA reveals underlying dimensions of a large set of 183 

variables (in this case indicators) and transforms them into components (or factors) based largely on their 184 

intercorrelation (Abdi and Williams, 2010; Field, 2013). In other words, highly correlated indicators will generally 185 

be grouped within the same components.  For more information on PCA specifications used in the SoVI 186 

formulation, see Schmidtlein et al. (2008). The resulting components are then named (e.g. Poverty, Wealth, Age, 187 

Gender) based on the indicators with the associated highest loadings (correlations). Adjustment to the cardinality 188 

of components is determined so that positive values equate to increases in vulnerability and negative values to 189 

decreases in vulnerability based on the underlying correlating indicators.  190 

While PCA is used to express important latent information in a data set, factor scores are also commonly 191 

computed to allow for further analyses (DiStefano et al., 2009; Grice, 2001; Odum, 2011). For the SoVI, this means 192 

appending a unique score to each input unit (tracts in this case) based on indicators’ factor loadings. Factor scores 193 



are calculated using the regression method (Thurstone, 1935), the most common of three refined methods in the 194 

statistical software SPSS (DiStefano et al., 2009; Odum, 2011) designed to maximize the degree of determinacy 195 

(Grice, 2001). Lastly, factor scores with the correct cardinality applied are summed and a final SoVI score emerges 196 

(Cutter and Morath, 2013).  Scores are most often visualized using standard deviation classes, although quantiles 197 

can also be used. 198 

2.2 The Global Delta Risk Index (GDRI) 199 

 200 

The GDRI (Hagenlocher et al., 2018) is based on the Delta-SES Framework developed by Sebesvari et al. (2016). 201 

This is itself largely derived from the vulnerability framework created by Turner et al. (2003), an attempt to 202 

synthesize the concerns and findings from sustainability and environmental change science with those of 203 

vulnerability analysis. Turner et al. (2003) are most widely recognized for advancing the concept of vulnerability 204 

by integrating the coupled social-ecological system (SES) (Adger, 2006; Birkmann, 2006). For the GDRI, this 205 

conceptualization is merged with that of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014) 206 

understanding of vulnerability as the predisposition of (SES) elements and processes to be adversely affected. 207 

Although there is a general lack of recognition of SES in vulnerability analyses, the gap in research is far more 208 

critical for delta environments, as most assessments disproportionally emphasize socio-economic factors 209 

(Hagenlocher et al., 2018; Sebesvari et al. 2016). Indicators in the GDRI are based on social- and eco-system 210 

characteristics with four vulnerability domains defined as social susceptibility, ecosystem susceptibility, lack of 211 

coping and adaptive capacity, and lack of ecosystem robustness (Sebesvari et al., 2016). Because all adaptive 212 

capacity indicators were either not relevant or lacking data for this study, only coping capacity is considered.  213 

The GDRI was designed to enable the application of expert weights to indicators, but equal weighting is used in 214 

this study. While weighting can produce significant differences in results, particularly in heterogeneous study 215 

areas (Emrich, 2005), equal weighting is a standard procedure in the absence of contradictory knowledge (Rufat 216 

et al., 2015).  217 

Data pre-processing for GDRI indicators followed the steps of outlier detection and treatment (winsorization), and 218 

multicollinearity detection, followed by Min-Max standardization and adjusting cardinality (such that all higher 219 

values equate to higher vulnerability). Outliers are first identified on the basis of the 5% trimmed mean, extreme 220 

values, and measures of skewness and kurtosis. In a further step, both the quality of indicator data and the 221 



divergence in values from spatially neighboring units were examined. Winsorization was applied to four tracts in 222 

the study area. Multicollinearity was assessed using a Pearson’s r correlation matrix and Variance Inflation Factor 223 

(VIF) scores and no indicators were excluded on this basis. 224 

Along with its theoretical contribution, the GDRI is also designed to enable flexible indicator selection based on 225 

relevance and data availability from a library of hazard-dependent and independent indicators as well as potential 226 

proxies categorized by their corresponding vulnerability domain (Hagenlocher et al., 2018). Although the GDRI is 227 

designed to calculate both hazard-specific and multi-hazard scores, only the multi-hazard feature of the GDRI is 228 

applied here for comparison purposes (see Hagenlocher et al., 2018 or Anderson et al., 2019 for details on hazard-229 

specific calculation). Each of the four vulnerability domains can be aggregated to the higher orders of ecosystem 230 

or social vulnerability and finally to social-ecological system vulnerability using arithmetic means (Fig. 2). 231 

Aggregation is also possible on the basis of SES susceptibility and SES robustness/coping and adaptive capacity 232 

(Hagenlocher et al., 2018). In this study an alternate configuration (resulting in identical final scores) to explicitly 233 

assess social vulnerability is favored to enable comparison with the SoVI. Moreover, while the GDRI is designed 234 

to enable further calculation of risk scores by including spatial exposure of hazard elements (Anderson et al., 235 

2019; Hagenlocher et al., 2018), only vulnerability is considered in this study.  236 

 237 

 238 

Fig. 2. Aggregative modular structure of GDRI (excluding exposure and risk) based on arithmetic means with 239 
aggregation flow from the bottom upwards (based on Hagenlocher et al. (2018)). 240 

 241 

First, the indicators used in this study within each domain – ecosystem susceptibility (n = 14), lack of ecosystem 242 

robustness (n = 5), social susceptibility (n = 13), and lack of coping capacity (n = 9) (Supplementary Material 1) – 243 



were aggregated using arithmetic means to derive a score for each. A further arithmetic mean is calculated for 244 

the next hierarchical step – ecosystem vulnerability and social vulnerability. Thus, e.g. both social susceptibility 245 

and lack of coping and adaptive capacity have equal influence on the social vulnerability score. This process is 246 

repeated to derive a final score of SES vulnerability. Scores are visualized using quantiles. 247 

3. Methods: study area, index application and comparison 248 

3.1 Study area: Mississippi Delta 249 

 250 

The Mississippi Delta has a rich cultural, economic, social, and environmental history and is one of the most 251 

biologically productive ecosystems in the U.S. (Kemp et al., 2014). Wetlands and intact coastal ecosystems not 252 

only support livelihoods but also reduce the impacts of flooding and storm surge by acting as buffers (MEA, 2005a; 253 

Nicholls et al., 2007). The mutual dependency of human and environment, exemplified by interconnections which 254 

are particularly evident in deltaic systems (Brondizio et al., 2016; Nicholls et al., 2007; Sebesvari et al., 2016; Szabo 255 

et al., 2016), supports the consideration of a coupled SES when assessing vulnerability (Hagenlocher et al., 2018). 256 

Increased hazard exposure has therefore been observed as a result of environmental degradation (Austin, 2006; 257 

Kemp et al., 2014) in an already highly exposed environment (Emrich and Cutter, 2011). Some of the most relevant 258 

hazards affecting the Mississippi Delta are climate-related and include drought, flooding, storm surge, hurricane 259 

winds, storms, and sea level rise, among others (Emrich and Cutter, 2011; Oxfam America, 2009). The interaction 260 

of exposure with high vulnerability has spawned many disasters in the region. Since only 2010, there have been 261 

nine major disaster declarations for the State of Louisiana (FEMA, 2018). Most of the delta falls within Louisiana 262 

and all nine of the declarations have affected counties within the delta boundary covered by this study (Fig. 3) 263 

(Tessler et al., 2015). From 1960 to 2015, Louisiana lost 86.6 billion USD and suffered 1,399 fatalities in socio-264 

natural disasters, respectively the third and fifth highest figures of any state in the U.S. (HVRI, 2017).  265 

Perhaps most illustrative of current vulnerability and exposure are the impacts of recent hurricanes (Finch et al., 266 

2010; Myers et al., 2008). Hurricane Katrina in 2005 caused the loss of 212 km2 of land in and around the 267 

Mississippi Delta (Barras, 2005), brought storm surges of over three meters spreading hundreds of kilometers, 268 

caused the deaths of more than 1500 people directly (Day et al., 2000), and resulted in federal disaster 269 



declarations covering an area roughly half the size of the United Kingdom (Freudenburg et al., 2009). 270 

Furthermore, a significant loss of estuarine marshes2 as well as extensive forest damage were observed (Wang 271 

and Xu, 2009), eroding crucial ecosystem services. More importantly, it has been empirically proven that the poor, 272 

elderly, renters and black populations were disproportionately negatively affected (Bullard and Wright, 2009), 273 

also justifying the importance of assessing social vulnerability in the delta.  274 

The Mississippi Delta boundary was taken from work by Tessler et al. (2015) and census tracts were used as the 275 

unit of assessment. These are relatively stable sub-county spatial units designed for collection and presentation 276 

of data from the decennial U.S. Census and other statistical programs (United States Census Bureau, 2011). Tracts 277 

contain an optimum number of inhabitants at 4,000 (United States Census Bureau, 2017), reflecting the 278 

approximate average population of tracts in the delta. Thirteen special land-use tracts (e.g. airports, water bodies, 279 

parks, etc.) were excluded from the assessments because of their capacity to skew the data standardization 280 

process and subsequent relative index scores. Thus, a remaining 736 census tracts of the original 749 total tracts 281 

were assessed that fall within counties (or parishes in the case of Louisiana) contained or contiguous to the delta 282 

extent (Fig. 3) (U.S. Census Bureau 2016a; 2016b). 283 

                                                           
2 https://coast.noaa.gov/digitalcoast/stories/katrina 



 284 

Fig 3. Map of study area –Mississippi River and tributaries flowing into the Mississippi Delta study area (a), 285 
Mississippi Delta delineation (crosshatch) (Tessler et al., 2015) with 29 intersecting counties, 27 from Louisiana 286 
and two from Mississippi (outlined in red) (b), and 749 census tracts within the study area (736 were used in the 287 
assessments) (c). 288 

 289 

3.2 SoVI and GDRI application 290 

 291 

The SoVI and GDRI were applied to the study area according to their respective approaches. While the SoVI 292 

application used the standard set of 27 socio-economic indicators for tract level assessments based on U.S. Census 293 

data, 41 indicators composed the GDRI. These were selected from the indicator library provided by Sebesvari et 294 

al. (2016) based on relevance to the study area as determined by spatial applicability and expert consultation 295 

when necessary. The contrasting epistemological and historical underpinnings inform differences in indicator 296 

selection between the indexes. Despite this divergence, of the 27 SoVI indicators, seven (26%) are identical to 297 

GDRI indicators applied, two (7%) share concepts but use different data, and eighteen (67%) are unique. All of the 298 

shared indicators fall within the social vulnerability component of the GDRI. Only one common indicator from the 299 

SoVI – Percent of Housing Units with No Car – is represented by coping capacity in the GDRI and all others by 300 



social susceptibility. Social vulnerability as defined by the GDRI  is therefore expected to show high convergence 301 

with the SoVI in relation to theory and indicator selection.  302 

A complete list of indicators applied for both indexes as well as data sources and scales are provided in 303 

Supplementary Material 1. The hazards of flooding (pluvial/fluvial), hurricanes (wind), storm surge (equivalent to 304 

coastal flooding), drought, and salinity intrusion form the basis of multi-hazard vulnerability for the GDRI. For a 305 

more detailed description of generic GDRI application steps see Hagenlocher et al. (2018). The SoVI assessment 306 

yielded seven components retained in the PCA explaining 74% of the variation in the input data (Supplementary 307 

Material 2). For a more detailed description of generic SoVI application steps see e.g. Cutter (2016), Dunning and 308 

Durden (2011), or Emrich et al. (2017). 309 

 310 

3.3 SoVI and GDRI comparison 311 

3.3.1 Comparing theory 312 

In order to first compare the index outputs including their contrasting theoretical perspectives, maps of index 313 

output scores for the SoVI and GDRI final SES scores were created. The SoVI was visualized using five standard 314 

deviation classes and the GDRI on the basis of the quantile symbology (equal number of observations per class) 315 

in ArcGIS (ESRI, Redlands, U.S.A.). Because the comparison should be based on final output and 316 

classification/visualization is an important step prior to disseminating results to the public and policy makers 317 

(UNISDR, 2015), the original classification methodologies for each index were retained. However, the sensitivity 318 

of findings are tested by using matching quantile classification and matching standard deviation methods. 319 

3.3.2 Comparing indicator selection 320 

Maps of index output scores for the SoVI and disaggregated social vulnerability component within the GDRI were 321 

created to focus on the effects of indicator selection while controlling for theory. The extent to which tracts 322 

change classes between the SoVI and social vulnerability component of the GDRI was also mapped to interpret 323 

the degree of difference in visual message (Cutter et al., 2013; Fernandez et al., 2017; Schmidtlein et al., 2008). 324 

The absolute value of the difference in tract rankings was determined, equating to values ranging from 0 (no class 325 

change between indexes) to 4 (maximum class change). A change of three classes or more serves as a threshold 326 

for interpretation because a tract must either flip from a low vulnerability class to a high class or vice versa within 327 



the five total classes. Such a shift represents a significant discrepancy in the final message with implications for 328 

shaping policy. Pearson’s r correlations using index scores were also calculated to support the visual and class-329 

change trends. 330 

The test for difference in indicator selection is somewhat biased given that nine indicators out of the 27 in the 331 

SoVI share the same raw data or concept with social vulnerability GDRI indicators. Because theory and indicator 332 

selection are tightly connected, truly defining the influence of either separately is not possible. However, in order 333 

to simulate the isolated influence of indicator selection in this case, social vulnerability within the GDRI was 334 

calculated using only the remaining 14 unique indicators. This was then compared to a formulation of the SoVI 335 

using the hierarchical averaging of the GDRI as described in the following subsection.  336 

3.3.3 Comparing aggregation methodologies 337 

The effects of the contrasting methodological approaches of each index were isolated by taking the SoVI indicators 338 

and using the GDRI aggregation methodology in an assessment. The resulting difference in the original SoVI using 339 

its inductive approach (PCA factor scores placed in an additive model) and a SoVI using the hierarchical GDRI 340 

methodology (hereafter SoVIG) serves as a sensitivity analysis of SoVI methodology as applied in the study area. 341 

By comparing the extent of divergence between the SoVIG and GDRI scores and the original SoVI and GDRI scores, 342 

the contribution of methodological index characteristics in explaining the overall difference in index outputs is 343 

determined.  344 

GDRI assessment application steps were followed starting with data pre-processing for the SoVIG. No indicators 345 

were removed following a test for multicollinearity based on variance inflation factor (VIF) scores and Pearson’s r 346 

correlation coefficients. Sub-groupings of vulnerability indicators, as present in the GDRI, were not artificially 347 

created because the SoVI indicators represent social susceptibility and coping capacity. The comparison 348 

methodology of class changes and correlation was replicated as described in the prior subsection (3.3.2). 349 

Because the SoVI’s inductive approach with PCA reduces input data based on indicator intercorrelation, this 350 

characteristic of the SoVI indicator set was isolated to explain the causal influence behind differences caused by 351 

aggregative methodology in index scores3. This feature of PCA is particularly relevant for the SoVI construction as 352 

                                                           
3 For more information on the intricacies of PCA related to index construction see Nardo et al. (2005) or Saisana and Tarantola (2002); or for 
other examples of application in this context see e.g. Clark et al. (1998), Li et al. (2012), Nicoletti et al. (2000), or Rygel et al. (2006).   



many social vulnerability indicators are often highly intercorrelated (Clark et al., 1998). The aggregated 353 

intercorrelations of indicators were determined by first creating a Pearson’s r correlation matrix of the 27 SoVI 354 

indicators. Absolute values were taken, and the mean (r̅) of the 26 correlations for each indicator calculated. 355 

Absolute values are used because the strength of relationship, rather than direction, determines component 356 

loadings, interpreted as either increasing or decreasing vulnerability in the SoVI’s PCA method (Schmidtlein et al., 357 

2008). The 27 indicators were rank-ordered by intercorrelation and graphed against the average Z-scores of 358 

groups of tracts that changed four, three, two, one, and no classes between the SoVI and SoVIG. Z-scores are 359 

standardized unitless scores that represent the position of distributed indicator values. Z-scores thus reveal the 360 

relative extremity of values. If divergence in scores between the indexes is a function of indicator intercorrelation, 361 

then values for the most intercorrelated indicators should have a disproportionate effect on the groups of tracts 362 

that change the most classes.  363 

4. Results and interpretation  364 

4.1 Influence of contrasting theories 365 

The GDRI was classified and visualized using quantile classes while the SoVI used standard deviations (Fig. 4).  366 



 367 

Fig. 4. GDRI final scores of SES multi-hazard vulnerability using the quantile classification (a) and final SoVI scores 368 
(b) using standard deviations with Low, Medium Low, Medium, Medium High, and High vulnerability classes. 369 

 370 

As expected, significant disparity between the indexes using different vulnerability constructs and methods is 371 

visually evident, with the northwest portion of the study area in the GDRI showing high SES vulnerability and 372 

coastline tracts in the SoVI showing high social vulnerability. A Pearson’s r correlation of r = 0.25 (α = 0.00) using 373 

final index scores triangulates the visual discrepancy. This degree of difference supports the divergent validity of 374 

each, given that the indexes are operationalizing different vulnerability constructs. The only potential 375 

concordance in terms of a general visual pattern is the band of both low SES vulnerability and low social 376 

vulnerability tracts in the eastern region of the delta. This finding warrants follow-up studies to identify the causal 377 

drivers of the pattern.  378 

4.2 Influence of contrasting indicators 379 
 380 

By disaggregating the GDRI and comparing on the basis of the same social vulnerability construct (controlling for 381 

different theories), overall discrepancies remain (Fig. 5).  382 



 383 
Fig. 5. Social vulnerability assessed by the GDRI using quantile classification (a) and SoVI® scores using standard 384 
deviations with Low, Medium Low, Medium, Medium High, and High vulnerability classes. 385 

 386 

The social vulnerability domain of the GDRI identifies rural tracts as being highly vulnerable and urban tracts less 387 

so. This is an expected outcome as the rural Mississippi Delta population is comparatively disadvantaged socio-388 

economically. The SoVI shows a less clear trend, although rural coastal tracts, generally the most isolated and 389 

sparsely populated, are attributed to the highest vulnerability class. Comparing on the basis of the same 390 

vulnerability construct decreases the Pearson’s r correlation to r = 0.095. The increased discrepancy in results 391 

indicates that the difference in theory, namely SES vulnerability (GDRI) as opposed to social vulnerability (SoVI), 392 

may be playing less of a role than the difference in aggregation methodology used. However, using class changes 393 

is a more indicative measure of differences in results given that classification and visualization is one crucial step 394 

in index creation. Thus, the extent of class changes per tract between the indexes was first mapped and then 395 

quantitatively compared based on social vulnerability (Fig. 6).  396 



 397 

Fig. 6. Degree of class change between the SoVI (standard deviation classes) and GDRI social vulnerability 398 
(quantile classes) scores. Values of 0 indicate full agreement while 4 is a change from either high to low 399 
vulnerability or vice versa.  400 

 401 

Close to a quarter of all tracts (23.9 %) change either three or four classes between the indexes assessing social 402 

vulnerability. This equates to a tract moving across the medium vulnerability axis of generally low to generally 403 

high social vulnerability or vice versa. Over half (54.6%) of tracts show general agreement, with only one or no 404 

class change.  405 

In order to determine the influence of the differing classification methods, both indexes were classed using 406 

quantiles and both using standard deviations. Quantile classifications for both indexes yields only slight shifts in 407 



outcome, with e.g. 21.2% of tracts now changing three or four classes. Using standard deviations for both indexes 408 

leads to less divergence. This is largely due to the distribution of GDRI scores around the mean leading to more 409 

medium vulnerability tracts, with 17.7% now changing three or four classes. Although important, the trends in 410 

divergence and convergence are only marginally sensitive to the choice of classification method. Using the original 411 

classification methods and comparing based on shared theory (social vulnerability), the indexes are delivering a 412 

significantly different message for the 176 tracts (23.9%) that cross the axis of medium vulnerability, while a nearly 413 

equivalent 170 tracts (23.1%) deliver the exact same message.  414 

However, nine indicators are shared between the indexes within the construct of social vulnerability. Thus social 415 

vulnerability in the GDRI was reassessed using only unique indicators and compared to the SoVIG (SoVI aggregated 416 

using hierarchical averaging). The classification method of each index was retained, with the SoVI using standard 417 

deviations and the SoVIG quantiles. This comparison  results in 11.8% of tracts changing three or four classes and 418 

64.8% changing either one or no classes. 419 

4.3 Influence of contrasting aggregation methodologies 420 

The influence of aggregation methodology was tested by comparing results of the newly created SoVIG (SoVI 421 

indicators aggregated using hierarchical averaging). Based on class changes, the test for methodology is shown to 422 

have a greater effect on both the divergence and convergence in output scores than the test for indicators, with 423 

12.6% of tracts changing three classes or more and 69% of tracts changing only one or no classes (Table 2). 424 

Table 2. Degree of class changes and results of Pearson’s r among tract scores using the SoVI, GDRI social 425 
vulnerability, and SoVIG configurations testing the influence of indicators and methodology. 426 

Comparison Divergence (>= 3 
class changes) 

Convergence (<= 1 
class change) r Held constant Test 

SoVI
G
/SoVI 12.6% (n =93) 69% (n = 508)  0.56** 

- Vulnerability 
construct 

- Indicators 
- Methodology 

SoVI
G
/GDRI social 

vulnerability with 
unique indicators 

11.8% (n =87) 64.8% (n = 477)  0.17** 
- Vulnerability 

construct 
- Methodology 

- Indicators 
(unique) 

SoVI/GDRI social 
vulnerability 23.9% (n = 176) 54.6% (n = 402) 0.095** - Vulnerability        

construct 

- Indicators     
(nine shared) 

- Methodology 
**correlation is significant to the 0.01 level (two-tailed) 427 
 428 



Therefore, methodology is creating the largest number of both significantly different and significantly similar tract 429 

scores. For each of the tests, the influence of classification method on results was determined by also using 430 

matching standard deviation and matching quantile methods, resulting in preserved general relative patterns.  431 

Despite recalculating social vulnerability in the GDRI using completely different indicators, methodology is 432 

exerting a slightly greater influence on whether or not output class rankings diverge or converge with the SoVI.  433 

One difference between the SoVI’s inductive method and the GDRI’s hierarchical method is their distinct 434 

treatment of indicator intercorrelation (Nardo et al., 2005). In the case of tracts within the Mississippi Delta, nine 435 

out of 27 SoVI indicators have a Pearson’s r correlation greater than 0.7 or less than -0.7 with at least one other 436 

indicator. The most highly intercorrelated indicator is Percent Black, which has a correlation of r = 0.77 (α = 0.00) 437 

with the indicator Percent Female-headed Households and r = -0.74 (α = 0.00) with the indicator Percent of 438 

Children Living in Married Couple Families. The next three most intercorrelated indicators among the 27 are Per 439 

Capita Income, Percent Poverty, and Percent Education below High School. Averaged Pearson’s r values were rank-440 

ordered, with number one representing the most intercorrelated indicator (Percent Black;  r̅ = 0.354) and number 441 

27 the least intercorrelated indicator (Percent of Population Living in Nursing and Skilled Nursing Facilities; r̅ = 442 

0.053).  443 

By taking the average Z-scores per indicator within the groups of tracts that change four, three, two, one, and no 444 

classes between the SoVI and SoVIG, respectively, the degree of extremity in indicator data for the tracts within 445 

these groups is expressed. Plotting the average Z-scores by class change on the y-axis and ordering the indicators 446 

from 1 (most intercorrelated) to 27 (least intercorrelated) on the x-axis, it is shown that as scores converge, and 447 

tracts change fewer classes, their average Z-scores approach zero for less intercorrelated indicators (Fig. 7). 448 



 449 
Fig 7.  Averaged absolute value Z-scores by class change with linear trend lines of indicator data arranged from 450 
most intercorrelated (1) to least intercorrelated (27) among tracts that change four, three, two, one, and no 451 
class. 452 

 453 

The tracts that flip more classes between the SoVI and SoVIG have relatively more extreme average values for the 454 

most intercorrelated indicators. The flat linear trend line of average Z-scores for the 247 tracts that change no 455 

classes demonstrates that intercorrelation among indicator data is driving the discrepancy in index scores caused 456 

by methodology. By using PCA with regression scores, the SoVI minimizes the influence of the most 457 

intercorrelated indicators and rather computes scores based on the relationship between indicators and 458 

extracted components (Goodwyn, 2012; Marsh, 2001; Thompson, 2004). In the case of SoVI methodology and 459 

output scores in the Mississippi Delta, the extracted components have reduced the impact of the most 460 

intercorrelated indicators when compared to the hierarchical design of the GDRI. This is highly influential in 461 

determining convergence and divergence caused by aggregative methodology - the most influential index 462 

characteristic when comparing SoVI and GDRI scores in the Mississippi Delta.  463 

5. Discussion 464 

While the GDRI more closely represents the nature of the Mississippi Delta as a coupled SES, demonstrated 465 

throughout its long history as a subject of research (Kemp et al., 2014), the SoVI is based on years of applied 466 

practice and evidence regarding the importance of socio-economic and demographic inequalities for vulnerability. 467 

The coupled SES represented by the GDRI has roots in the concept of ecosystem services, whereby social 468 

interactions with ecosystems can improve or deteriorate these crucial services and influence risk (MEA, 2005b). 469 



The inclusion of ecosystem-based indicators thereby also enables the consideration of ecosystem-based disaster 470 

risk reduction measures by decision makers (Renaud et al., 2016). For the SoVI, indicator selection derived from 471 

its underlying theory represents an important contribution by capturing a range of socio-economic and 472 

demographic factors. The well-documented struggles of socially marginalized population sub-groups in the 473 

aftermath of prior disasters in the Mississippi Delta like Hurricane Katrina (Bullard and Wright, 2009) have 474 

contributed to confidence in the validity of SoVI indicators in this context. In this study design, the use of 475 

convergent validity is not able to prove or disprove the degree of representativeness of actual relative 476 

vulnerability scores for either index. However, the satisfactory translation of theory into scores and policy 477 

message is tenuous given the powerful intermediary effect of aggregation methodology revealed.  478 

The significance and extent of influence arising from methodology on output scores has been demonstrated in 479 

previous research (e.g. Burton, 2015; Cutter et al., 2014; Dunning and Durden, 2011; Fernandez et al., 2017; Tate, 480 

2012, 2013; Willis and Fitton, 2016). Tate (2012) highlighted the importance of methodology using results of a 481 

thorough sensitivity analysis across study areas by observing similar metrics and concluding that, “…uncertainty 482 

and sensitivity of social vulnerability indices is more a function of the construction methodology of the index than 483 

differences in demographics between places” (p. 340). Similar findings were presented by Fernandez et al. (2017) 484 

regarding the impact of aggregation methods on index output and the pessimistic implications for the utility of 485 

index-based vulnerability assessments in policy contexts. Although the effect of contrasting methodologies has 486 

been established, critical research and discussion surrounding the specific implications of these findings has not 487 

been sufficient. Distinct approaches as well as advances in vulnerability theory will not be effectively 488 

operationalized and leveraged for policy without serious consideration of methodological choice.  489 

Indeed, the influence of methodology as an intermediary between theory and output was shown here to exert 490 

more influence on the final scores than the initial theory itself. One influential driver of this is the unique 491 

treatment of indicator intercorrelation by each index. The hierarchical method does not inherently consider the 492 

interrelations among indicator data but rather assumes, if no weighting is used, that increases in values of one 493 

indicator compensate for decreases in another (Jones and Andrey, 2007; Nardo et al., 2005). The arithmetic mean 494 

within each sub-grouping is designed to capture corresponding levels of vulnerability. This implies that scores 495 

from a hierarchical index with many highly intercorrelated indicators will most closely represent the ‘story’ these 496 

indicators are telling. 497 



One step of GDRI pre-processing is possible indicator exclusion based on multicollinearity, a common practice in 498 

index construction and important in order to avoid ‘double counting’ the same or similar phenomena (Nardo et 499 

al., 2005). In the case of both the original study by Hagenlocher et al. (2018) and the GDRI applied in the Mississippi 500 

Delta presented here, no indicators were excluded on this basis. However, three indicators used in this study 501 

(Density of emergency services, Access to shelter places, and Density of transportation network) within the social 502 

coping capacity sub-grouping had Pearson’s r intercorrelations of > 0.9 (α = 0.00). They were justifiably retained 503 

given that they represent both separate and important concepts relevant for coping with disaster events. While 504 

indicators within the SoVIG were also retained despite high correlation values, the subjective yet justifiable 505 

decision could have been reached to exclude several indicators. Findings emphasize that these decisions, 506 

particularly for the GDRI’s hierarchical approach, have implications for index output and general policy message.   507 

Contrary to the hierarchical method, using the inductive design with PCA reduces highly intercorrelated indicators 508 

into single components. The tacit assumption is that those indicators are telling the same story and should not be 509 

‘double-counted’ (Nardo et al., 2005). Clearly, there is no right or better answer but rather two distinct 510 

approaches.  Crucial, however, is the contextual consideration of whether the method is adequately enabling the 511 

representation of a justifiably chosen theory. Cutter and Morath (2013) refer to the SoVI design and argue that 512 

not merely the proportion of a population characterized by indicators but rather the interaction between the 513 

indicators is decisive. This is theoretically sound, as vulnerability is a multi-dimensional construct and the 514 

experience of being both black and a member of a female headed household or black and impoverished is likely 515 

different than the simple summation or averaging of both traits taken together. In the case of the SoVI as applied 516 

in the Mississippi Delta, these highly intercorrelated indicators were significantly reduced in relative influence 517 

when compared to their application using the hierarchical design.  518 

Similarly, it is necessary to consider the relative increased influence of the least intercorrelated indicators with 519 

the inductive design and relative decrease with the hierarchical design. For example, the SoVI indicator Percent 520 

Native American represents a specific demographic characteristic contributing to social vulnerability against the 521 

background of a unique historical trajectory in the study area. This indicator was one of the least intercorrelated 522 

in the assessment and therefore its relative influence based on the set of 27 indicators was comparatively 523 

augmented in the SoVI when compared to the SoVIG. Is it sufficient to include such an indicator in an arithmetic 524 

mean or does its unique contribution to social vulnerability merit a more nuanced approach? Clearly, it should 525 



not be diminished because of low intercorrelation, but does it contribute more to vulnerability than indicators 526 

that happen to be highly intercorrelated? More research is needed along these lines of inquiry to ensure that 527 

methodological choices are proper conduits of established theory. Notwithstanding needed advancements; 528 

clearly defined assessment objectives, reflecting on the influence of methodological decisions, and a consultation 529 

of expert qualitative knowledge can inform these decisions. 530 

This study focuses on comparing the effects on index scores manifested by general characteristics regarding 531 

contrasting theory, indicator selection, and methodology. However, there are a number of other important 532 

considerations within any given aggregation methodology chosen that can significantly alter results. For example, 533 

Tate (2013) showed that although selecting the indicator set is an important step for indexes using hierarchical 534 

designs, in fact decisions regarding weighting and transformation of data can more greatly impact final scores. 535 

Likewise, the many decisions within the inductive SoVI design interact to exert significant influence on final scores 536 

(Schmidtlein et al., 2008; Tate, 2013).  537 

Given the ubiquity of the SoVI® in policy contexts and the countless potential configurations regarding initial 538 

indicator set, normalization, factor extraction, derivation of factor scores and/or weighting based on loadings, and 539 

final summation, further systematic research is warranted. The simple hierarchical method does have one 540 

advantage here in that it more easily allows analysts or end users to dissect the drivers behind final vulnerability 541 

rankings within study units. While any form of aggregation will skew original indicator data, it is difficult to trace 542 

back the influence of indicators on final vulnerability scores using the SoVI’s inductive design with PCA (Dunning 543 

and Durden, 2011; Yoon, 2012). Component scores for geographic units can be presented along with final scores 544 

(e.g. Emrich et al., 2017), but are not very intuitive given that original indicator data have undergone a 545 

sophisticated statistical transformation. 546 

Although both the SoVI and GDRI emphasize social susceptibility and coping capacity, neither index explicitly 547 

captures the concept of adaptive capacity in this study. The GDRI’s indicator library does categorize 73/236 (31%) 548 

of indicators as relevant to adaptation (Sebesvari et al., 2016), but contextual data relevance and availability for 549 

the Mississippi Delta excluded these indicators from the assessment. Future research, including longitudinal 550 

studies, should more closely focus on these dimensions of vulnerability theory and dissect their dynamic nature 551 

in contexts of disaster impacts. Studies using impact metrics that are able to capture long-term recovery as well 552 



as a broader range of non-economic impacts (psychological, cultural, environmental and otherwise) would also 553 

improve validation efforts.  554 

The current inevitability of a scarcity of necessary data (Hinkel, 2011) as well as the consequential influence of 555 

methodological choices lacking substantiation as shown by this study raise questions regarding the use of index-556 

based vulnerability assessments in policy contexts. Findings suggest that, given the uncertainty, best practices 557 

include clear and explicit margins of confidence in results. Using fuzzy logic, observations, natural experiments 558 

and narratives (Young et al., 2006), grounded theory for inductive and deductive method development (Polsky et 559 

al., 2007), and including qualitative data (Adger, 2006) could help better support findings.  560 

Also, the fewer ranked categories into which relative output scores are placed, the more likely their attribution is 561 

to be accurate. Quantiles could easily be consistently substituted, for example, by the use of only three categories 562 

of low, medium and high vulnerability as is also common practice with the SoVI (e.g. Emrich, 2017; Emrich et al., 563 

2017; Puerto Rico, 2018; SCDRO, 2018; Oxfam America, 2009). In the context of this study, however, when 564 

comparing class changes between the SoVI and the social vulnerability component of the GDRI and using three 565 

classes for both indexes, 61 out of the 163 (44.9%) tracts in the highest SoVI standard deviation class (> 1.5) still 566 

change two classes when compared to three quantile GDRI classes, a trend that holds using matching quantile 567 

classifications. In other cases, a lower level of precision may improve accuracy and be adequate depending on the 568 

index purpose or intended use. Therefore, determining these considerations by working with decision-makers 569 

during index design, visualization and dissemination should be a fundamental part of assessment procedure.  570 

Efforts to improve validity, including uncertainty and sensitivity analyses, can guide discussion regarding 571 

methodological choices (Beccari, 2016) and must be seen as an important step in index creation and use (Baptista, 572 

2014). Rigorous usage by decision makers should also help with user validation efforts (Gall, 2007) if lessons from 573 

monitoring and evaluation are used as input in future best practices. Future studies should directly assess and 574 

relate index design choices analyzed in this research to actual preferences by decision-makers. In addition to the 575 

lack of refinement and associated confidence in results, indexes can represent narrow views of reality. Further, 576 

they can be interpreted as quick-fixes to complex problems if used improperly (Morse, 2013), an issue magnified 577 

by their appeal to policy makers (Barnett et al., 2008). This serves to increase the urgency with which 578 

advancements are needed. Taubenböck and Geiß (2014) rightly call for “research about research” in light of the 579 

diffusion of vulnerability concepts and subjects. Although more attention has progressively been given to 580 



methodological challenges for assessing vulnerability there remains a lack of consensus and progress has not kept 581 

pace with theoretical advancements. Critical comparison studies should be accompanied by improvements in 582 

transparency regarding the inherent trade-offs and limitations of methods and results. 583 

6. Conclusion 584 

While findings point to the need for general critical reflection of index-based vulnerability assessments, the 585 

importance of scrutinizing and improving existing aggregation methodologies has been highlighted. The two 586 

contrasting index-based approaches compared in this paper, the SoVI and the GDRI, represent significant divides 587 

found in vulnerability assessment literature regarding theory, indicator selection and aggregation methodology. 588 

The effect of aggregation methodologies driven by their unique treatment of intercorrelation among indicators 589 

more strongly dictates final vulnerability classes than the assessment step of theory-driven indicator selection.  590 

Bolstered by past studies regarding the influence of aggregation methodology, generalized findings presented are 591 

likely applicable in other contexts. However, the degree of influence of theory, indicator selection, and 592 

aggregation methodology will vary based on place-specific factors and should be systematically assessed on a 593 

case-by-case basis. 594 

Indexes can be powerful tools for synthesizing complex phenomena such as vulnerability and risk. However, the 595 

proliferation of vulnerability assessments and particularly index-based approaches has not coincided with the 596 

sufficient critical reflection and sharpening of methods needed for confidence in results. Advancements in 597 

underlying theory will only be as useful as their ability to be reliably operationalized. Efforts should not be limited 598 

to technical validation but rather rigorously consider the relation between final index scores and theoretical aims, 599 

with methodology acting as a conduit. Although it is unrealistic and misguided to search for one configuration 600 

that is normatively superior, it may be possible to create a ‘toolbox’ of approaches that transparently allows 601 

justifiable links between theory, method and output for vulnerability and risk analysts. 602 

Rapidly changing environmental and social systems further support the need for establishing representative 603 

vulnerability baselines, confronting assumptions, and calibrating assessments. Revealing convergence or 604 

divergence in index output should be seen as one effective tool for determining confidence in results and 605 



providing insight into how vulnerability is assessed and manifested, contributing to urgently needed 606 

advancements in the field.  607 
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