1,336 research outputs found

    Limits of feedback control in bacterial chemotaxis

    Full text link
    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. Using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation we identify an operational regime of the pathway that maximizes drift velocity for various environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.Comment: Corrected one typo. First two authors contributed equally. Notably, there were various typos in the values of the parameters in the model of motor adaptation. The results remain unchange

    beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data

    No full text
    International audienceDuring the past few years, the machine learning community has paid attention to developing new methods for learning from weakly labeled data. This field covers different settings like semi-supervised learning, learning with label proportions, multi-instance learning, noise-tolerant learning, etc. This paper presents a generic framework to deal with these weakly labeled scenarios. We introduce the \betarisk as a generalized formulation of the standard empirical risk based on surrogate margin-based loss functions. This risk allows us to express the reliability on the labels and to derive different kinds of learning algorithms. We specifically focus on SVMs and propose a soft margin \betasvm algorithm which behaves better that the state of the art

    Epidemic Contact Tracing via Communication Traces

    Get PDF
    International audienceTraditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks

    A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs

    Get PDF
    This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word ×\times time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequential activity patterns (our motifs) where the mixing weights are defined by the motif starting time occurrences. The novelties are multi fold. First, unlike previous approaches where topics modeled only the co-occurrence of words at a given time instant, our motifs model the co-occurrence and temporal order in which the words occur within a temporal window. Second, unlike traditional Dynamic Bayesian networks (DBN), our model accounts for the important case where activities occur concurrently in the video (but not necessarily in synchrony), i.e., the advent of activity motifs can overlap. The learning of the motifs in these difficult situations is made possible thanks to the introduction of latent variables representing the activity starting times, enabling us to implicitly align the occurrences of the same pattern during the joint inference of the motifs and their starting times. As a third novelty, we propose a general method that favors the recovery of sparse distributions, a highly desirable property in many topic model applications, by adding simple regularization constraints on the searched distributions to the data likelihood optimization criteria. We substantiate our claims with experiments on synthetic data to demonstrate the algorithm behavior, and on four video datasets with significant variations in their activity content obtained from static cameras. We observe that using low-level motion features from videos, our algorithm is able to capture sequential patterns that implicitly represent typical trajectories of scene object

    Flux-loss of buoyant ropes interacting with convective flows

    Get PDF
    We present 3-d numerical magneto-hydrodynamic simulations of a buoyant, twisted magnetic flux rope embedded in a stratified, solar-like model convection zone. The flux rope is given an initial twist such that it neither kinks nor fragments during its ascent. Moreover, its magnetic energy content with respect to convection is chosen so that the flux rope retains its basic geometry while being deflected from a purely vertical ascent by convective flows. The simulations show that magnetic flux is advected away from the core of the flux rope as it interacts with the convection. The results thus support the idea that the amount of toroidal flux stored at or near the bottom of the solar convection zone may currently be underestimated.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    AgroPortal: an ontology repository for agronomy

    Full text link
    Many vocabularies and ontologies are produced to represent and annotate agronomic data. Therefore, there is a need of a common platform to identify, host and use them in agro-informatics application. By reusing the NCBO BioPortal technology, we have designed AgroPortal an ontology repository for the agronomy domain. The AgroPortal project aims at reusing the scientific outcomes and experience of the biomedical domain in the context of plant, agronomy, food, and biodiversity. We offer an ontology portal which features ontology hosting, search, versioning, visualization, comment, recommendation, enables semantic annotation, as well as storing and exploiting ontology alignments. All of these within a fully semantic web compliant infrastructure. The AgroPortal specifically pays attention to respect the requirements of the agronomic community in terms of ontology formats (e.g., SKOS, trait dictionaries) or supported features. In this demonstration, we will present our platform currently open and accessible at http://agroportal.lirmm.fr
    corecore