942 research outputs found

    Limits of feedback control in bacterial chemotaxis

    Full text link
    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. Using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation we identify an operational regime of the pathway that maximizes drift velocity for various environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.Comment: Corrected one typo. First two authors contributed equally. Notably, there were various typos in the values of the parameters in the model of motor adaptation. The results remain unchange

    COMPARTMENTATION OF DEFENCES IN ARABIDOPSIS THALIANA ROOTS

    Get PDF
    Plants rely on an adaptable immune system to regulate their intricate interactions with the many microorganisms that surround them, particularly in the soil. While roots can mount very effective defences against pathogens, they also host an extremely rich microbiota that provides beneficial functions to the plant. Surprisingly, commensal and pathogenic bacteria are recognized via the same conserved molecular patterns which induce MAMP-triggered immunity (MTI). This raises the question of how plants manage to accommodate a useful microbial community without overstimulating their immune system, which would cause growth penalties. It was recently shown that plant roots restrict their immune responses at microbial entry sites, suggesting that plants spatially control their defences. Nevertheless, MTI responses were rarely assessed with a tissue-specific resolution. In this work, we first demonstrated that the combination of local damage and microbial molecular patterns could unlock defences in otherwise unresponsive parts of the root. This would ensure that defences are only induced when plants are threatened by aggressive microbial colonizers. We also showed that MAMP-receptor expression is induced by damage, which determines MAMP responsiveness in certain regions. Using recombinant lines expressing the FLS2 receptor ectopically, we discovered that the root central meristem is refractory to flg22 ligand perception. However, ectopic FLS2 expression in the meristematic epidermis can render this region super-competent, leading to strong root growth inhibition in the presence of commensals. Therefore, our findings revealed that the spatial regulation of defence is crucial to the flexibility of MAMP perception. Furthermore, we explored how commensal bacteria can bypass plant defences. We found that despite the strong sensitivity of super-competent plants, their growth was not affected by either specific individual bacterial strains or by complex bacterial communities. The structure of bacterial communities was also not affected by the strong responsiveness of these lines. To understand how bacteria can overcome plant defence, we screened a population of Pseudomonas protegens CHA0 mutants for loss of MTI suppression and identified potential candidates with defects in lipopolysaccharides, exopolysaccharides or gluconate synthesis. Tissue-specific expression of FLS2 revealed lignification as a downstream response of MTI. When induced specifically in the endodermis, this lignification was surprisingly akin to the response observed after external application of CIF2 endogenous peptide, which lead to stimulation of the SCHENGEN pathway ensuring the integrity of the Casparian strip. Since FLS2 and SCHENGEN signalling share several analogous components, we used the endodermal FLS2 line to investigate how specificity is achieved by two different pathways in a single cell-type. Using transcriptomic and microscopic analyses, we showed that both pathways have a large set of core responses in common, as well as specific features. Thus, the endodermis can be used as a model system to assess signalling specificity between the related CIF2 and flg22 signalling pathways. Plant defences have long been studied as a whole, focusing on the outcome of single plant-pathogen interactions. This work shows that the use of cell-type specific immune response markers can improve our understanding of immunity at the cellular scale and reveals the complex dynamics between tissue-specific MTI responses and bacterial communities. -- Les plantes interagissent constamment avec les micro-organismes qui les entourent. Les racines, en particulier, abritent une communautĂ© bactĂ©rienne extrĂȘmement riche qui leur fournit une vaste palette de fonctions bĂ©nĂ©fiques. On peut toutefois constater que de nombreuses bactĂ©ries, qu’elles soient commensales ou pathogĂšnes, sont capables d’activer l’immunitĂ© innĂ©e des vĂ©gĂ©taux. En effet, elles prĂ©sentent des motifs molĂ©culaires conservĂ©s, les MAMPs (microbes-associated molecular patterns), aussi nommĂ©s Ă©liciteurs, qui vont ĂȘtre reconnus par des rĂ©cepteurs membranaires PRRs (pattern recognition receptors). On peut dĂšs lors se demander comment les plantes rĂ©ussissent Ă  hĂ©berger un microbiote sans surstimuler leur systĂšme immunitaire, ce qui ralentirait leur croissance, tout en se dĂ©fendant contre les pathogĂšnes. Il a Ă©tĂ© montrĂ© rĂ©cemment que les plantes confinent leurs rĂ©ponses immunitaires aux rĂ©gions les plus vulnĂ©rables de la racine. Cela suggĂšre qu’elles sont capables de contrĂŽler localement leurs dĂ©fenses. NĂ©anmoins, l’immunitĂ© innĂ©e n’a pas encore Ă©tĂ© Ă©tudiĂ©e avec une rĂ©solution qui soit tissu-spĂ©cifique. Dans ce projet, nous avons tout d’abord dĂ©montrĂ© qu’il suffisait de combiner un dommage localisĂ© avec une exposition Ă  des MAMPs pour dĂ©bloquer les dĂ©fenses immunitaires dans les zones racinaires qui Ă©taient auparavant insensibles Ă  la prĂ©sence d’éliciteurs. Ce mĂ©canisme permettrait Ă  la plante d’induire une rĂ©ponse immune uniquement en prĂ©sence de bactĂ©ries agressives. Nous avons Ă©galement montrĂ© que l’expression du rĂ©cepteur FLAGELLIN SENSING 2 (FLS2) Ă©tait activĂ©e par des lĂ©sions tissulaires, et dĂ©terminait, associĂ©e aux propriĂ©tĂ©s intrinsĂšques des diffĂ©rents tissus, les rĂ©gions sensibles Ă  l’éliciteur flg22 (flagellin peptide 22). En effet, l’utilisation de lignĂ©es exprimant le rĂ©cepteur FLS2 de façon ectopique nous a permis de dĂ©couvrir que la zone centrale du mĂ©ristĂšme de la racine est rĂ©fractaire Ă  la perception de flg22. Cependant, l’épiderme entourant cette rĂ©gion peut ĂȘtre rendu hautement immunocompĂ©tent si FLS2 y est artificiellement exprimĂ©. Cette super-immunocompĂ©tence cause ainsi une importante inhibition de la croissance racinaire en prĂ©sence de flg22 ou de bactĂ©ries pourtant inoffensives. Notre analyse rĂ©vĂšle ainsi l’importance d’une localisation contrĂŽlĂ©e des rĂ©ponses immunitaires. Nous avons Ă©galement Ă©tudiĂ© les moyens par lesquels les bactĂ©ries contournent les dĂ©fenses immunitaires des plantes. En effet, nous avons montrĂ© que, malgrĂ© la forte sensibilitĂ© des plantes super-compĂ©tentes, leur croissance n’est pas affectĂ©e lorsqu’inoculĂ©es avec certaines souches bactĂ©riennes spĂ©cifiques, ou avec un microbiote complexe. De plus, ces lignĂ©es super-compĂ©tentes n’influencent pas la composition de la communautĂ© bactĂ©rienne. Pour comprendre le mĂ©canisme de cette suppression immune, nous avons effectuĂ© un crible gĂ©nĂ©tique sur une population de mutants de la souche Pseudomonas protegens CHA0. Nous avons isolĂ© des candidats, affectĂ©s dans la synthĂšse du gluconate, de lipopolysaccharides et d’exopolysaccharides, ayant perdus leurs propriĂ©tĂ©s immunosuppressives. L’expression tissu-spĂ©cifique de FLS2 nous a permis d’identifier le processus de lignification comme une rĂ©ponse de l’immunitĂ© innĂ©e. Lorsqu’induite spĂ©cifiquement dans l’endoderme, cette lignification est Ă©tonnamment semblable Ă  la rĂ©ponse induite par la voie de signalisation SCHENGEN (SGN). ActivĂ©e par le peptide CIF2, elle contrĂŽle l’intĂ©gritĂ© des cadres de Caspary. Comme l’immunitĂ© et la signalisation SGN partagent nombre de composants, nous les avons comparĂ©s au sein d’un mĂȘme type cellulaire pour comprendre comment elles induisent des rĂ©ponses spĂ©cifiques. GrĂące Ă  des analyses microscopiques et transcriptomiques, nous avons montrĂ© que les deux voies de signalisation partagent un mĂȘme set de rĂ©ponses centrales, mais diffĂšrent dans leur localisation et leur temporalitĂ©. L’endoderme se rĂ©vĂšle ĂȘtre un excellent systĂšme modĂšle pour Ă©tudier la spĂ©cificitĂ© des rĂ©ponses induites par CIF2 et flg22. Les dĂ©fenses vĂ©gĂ©tales ont longtemps Ă©tĂ© Ă©tudiĂ©es comme un tout, se concentrant principalement sur le rĂ©sultat d’une interaction entre une plante et un pathogĂšne, ou, au mieux, sur la rĂ©ponse immune d’un organe spĂ©cifique. Ce projet de thĂšse offre Ă  prĂ©sent plusieurs exemples dans lesquels l’utilisation de marqueurs de l’immunitĂ©, spĂ©cifiques Ă  un type cellulaire, a amĂ©liorĂ© notre comprĂ©hension Ă  plus petite Ă©chelle de l’immunitĂ© innĂ©e. Ces approches apporteront une nouvelle lumiĂšre sur notre conception du systĂšme immunitaire vĂ©gĂ©tal. -- Tout comme les animaux, les plantes possĂšdent un systĂšme immunitaire innĂ© et peuvent se dĂ©fendre efficacement contre les pathogĂšnes. Cependant, leurs racines hĂ©bergent une myriade de bactĂ©ries bĂ©nĂ©fiques qui les aident dans de multiples fonctions, mais qui peuvent Ă©galement dĂ©clencher les rĂ©ponses immunitaires de la plante. Malheureusement, nous ne comprenons toujours pas comment les plantes arrivent Ă  distinguer une bactĂ©rie bĂ©nĂ©fique d’un pathogĂšne virulent, et comment elles dĂ©cident de la stratĂ©gie Ă  adopter : se dĂ©fendre ou accueillir le colonisateur ? Nous commençons Ă  comprendre que les plantes sont capables de rĂ©guler finement leurs rĂ©ponses immunitaires, notamment en confinant leurs rĂ©ponses immunes Ă  certaines rĂ©gions vulnĂ©rables. Nous avons pu dĂ©montrer que le reste de la racine n’est pas complĂštement insensible pour autant, et peut soudainement induire une rĂ©ponse immune si la racine est blessĂ©e et entre en contact avec des molĂ©cules bactĂ©riennes. Ainsi, la lĂ©sion des tissus de la racine induit la production de rĂ©cepteurs FLS2 qui vont dĂ©tecter les Ă©liciteurs bactĂ©riens flg22. De la sorte, la plante ignore les bactĂ©ries bĂ©nĂ©fiques, mais s’active lorsque celles-ci font des dĂ©gĂąts. De plus, nous avons observĂ© que des dĂ©fenses activĂ©es au mauvais endroit pouvait passablement affecter la croissance racinaire. Ainsi, les tissus responsables de la prolifĂ©ration cellulaire sont complĂ©tement incapables de dĂ©tecter flg22, probablement pour Ă©viter une rĂ©ponse immunitaire qui perturberait la croissance. En revanche, les tissus entourant cette rĂ©gion centrale sont particuliĂšrement immunocompĂ©tents : en temps normal, ils sont peu rĂ©actifs Ă  la prĂ©sence de flg22, mais deviennent hyperactifs et induisent un fort ralentissement de la croissance un fois qu’ils expriment le rĂ©cepteur FLS2. Ces rĂ©sultats nous aident Ă  comprendre comment les plantes rĂ©gulent l’activation de leurs dĂ©fenses immunitaires pour Ă©viter une suractivation qui serait nĂ©faste Ă  son dĂ©veloppement et Ă  son microbiote, tout en maintenant leur protection contre les pathogĂšnes

    Development and diversity of lignin patterns

    Get PDF

    Navigating the World Wide Web in Search of Resources on Antimicrobial Resistance

    Get PDF
    This overview gives information on navigating for English-language Web sites on antimicrobial resistance. Web sites were gathered on the basis of personal files, articles, and an exhaustive Web search of cross-links from other Web pages. The Web sites were categorized according to users' needs into 5 broad categories, as follows: comprehensive Web sites, with information on all aspects of antimicrobial resistance-related issues; Web sites with patient information about antimicrobial resistance and about methicillin-resistant Staphylococcus aureus, in particular; Web sites covering current multinational surveillance programs; Web sites on prevention of antimicrobial resistance in health care facilities; and Web sites on control of antimicrobial resistance in the community. We compiled a selection of Web sites that seemed to be useful as starting points for physicians, epidemiologists, researchers, or patients interested in this topi

    Buoyant magnetic flux ropes in a magnetized stellar envelope: Idealized numerical 2.5-D MHD simulations

    Get PDF
    Context: The context of this paper is buoyant toroidal magnetic flux ropes, which is a part of flux tube dynamo theory and the framework of solar-like magnetic activity. Aims: The aim is to investigate how twisted magnetic flux ropes interact with a simple magnetized stellar model envelope--a magnetic "convection zone"--especially to examine how the twisted magnetic field component of a flux rope interacts with a poloidal magnetic field in the convection zone. Method: Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical magneto-hydrodynamic (MHD) simulations. Results: It is illustrated that twisted toroidal magnetic flux ropes can interact with a poloidal magnetic field in the atmosphere to cause a change in both the buoyant rise dynamics and the flux rope's geometrical shape. The details of these changes depend primarily on the polarity and strength of the atmospheric field relative to the field strength of the flux rope. It is suggested that the effects could be verified observationally.Comment: 8 pages, 5 figures (9 files), accepted by A&

    beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data

    No full text
    International audienceDuring the past few years, the machine learning community has paid attention to developing new methods for learning from weakly labeled data. This field covers different settings like semi-supervised learning, learning with label proportions, multi-instance learning, noise-tolerant learning, etc. This paper presents a generic framework to deal with these weakly labeled scenarios. We introduce the \betarisk as a generalized formulation of the standard empirical risk based on surrogate margin-based loss functions. This risk allows us to express the reliability on the labels and to derive different kinds of learning algorithms. We specifically focus on SVMs and propose a soft margin \betasvm algorithm which behaves better that the state of the art
    • 

    corecore