102 research outputs found

    Reversing the Tumor Target: Establishment of a Tumor Trap

    Get PDF
    Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.This work was supported by the “Institut National de la SantĂ© et de la Recherche MĂ©dicale” (INSERM), the University of Angers (Angers, France), the MINECO (SAF2017-83118-R), the Agencia Estatal de Investigacion (AEI, Spain), and the Fondo Europeo de Desarollo Regional (FEDER). It is also related to the LabEx IRON “Innovative Radiopharmaceuticals in Oncology and Neurology” as part of the French government “Investissements d’Avenir” program, to the INCa (Institut National du Cancer) MARENGO consortium “MicroRNA agonist and antagonist Nanomedicines for GliOblastoma treatment: from molecular programmation to preclinical validation” through the PL-BIO 2014-2020 grant and to the MuMoFRaT project “Multi-scale Modeling & simulation of the response to hypo-Fractionated Radiotherapy or repeated molecular radiation Therapies” supported by “La RĂ©gion Pays-de-la-Loire” and by the CancĂ©ropĂŽle Grand-Ouest (tumor targeting and radiotherapy network). MN was a Ph.D. student involved in the Erasmus Mundus Joint Doctorate program for Nanomedicine and pharmaceutical innovation (EMJD NanoFar) and received a fellowship from “La RĂ©gion Pays-de-la-Loire.”S

    External irradiation models for intracranial 9L glioma studies

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Radiotherapy has been shown to be an effective for the treatment human glioma and consists of 30 fractions of 2 Gy each for 6-7 weeks in the tumor volume with margins. However. in preclinical studies, many different radiation schedules are used. The main purpose of this work was to review the relevant literature and to propose an external whole-brain irradiation (WBI) protocol for a rat 9L glioma model.</p> <p>Materials and methods</p> <p>9L cells were implanted in the striatum of twenty 344-Fisher rats to induce a brain tumor. On day 8, animals were randomized in two groups: an untreated group and an irradiated group with three fractions of 6 Gy at day 8, 11 and 14. Survival and toxicity were assessed.</p> <p>Results</p> <p>Irradiated rats had significantly a longer survival (p = 0.01). No deaths occurred due to the treatment. Toxicities of reduced weight and alopecia were increased during the radiation period but no serious morbidity or mortality was observed. Moreover, abnormalities disappeared the week following the end of the therapeutic schedule.</p> <p>Conclusions</p> <p>Delivering 18 Gy in 3 fractions of 6 Gy every 3 days, with mild anaesthesia, is safe, easy to reproduce and allows for standardisation in preclinical studies of different treatment regimens glioma rat model.</p

    In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggresiveness and AC 133 expression

    Get PDF
    Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO(2)) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrinsic factor regulation of AC133, this work aimed to investigate the relationship between cell culture pO(2), AC133 expression, and tumor development and phenotype. Using treatments with CoCl(2) and HIF-1α shRNA knockdowns on non-sorted human primary glioblastoma cells cultured at low (3%) versus high (21%) oxygen tension, we established a responsibility for low pO(2) in the maintenance of high levels of AC133 expression, with a major but non-exclusive role for HIF-1α. We also demonstrated that human glioblastoma cells previously cultured under high oxygen tension can lose part of their aggressiveness when orthotopically engrafted in SCID mice or lead to tumors with distinct phenotypes and no re-expression of AC133. These observations showed that the specific pO(2) microenvironment irreversibly impacts glioblastoma cell phenotypes, highlighting the pertinence of culture conditions when extrapolating data from xenogenic models to human cells in their source environment. They also raised AC133 as a marker of non-exposure to oxygenated areas rather than a marker of aggressiveness or low pO(2) niches

    Implantable SDF-1α-loaded silk fibroin hyaluronic acid aerogel sponges as an instructive component of the glioblastoma ecosystem: between chemoattraction and tumor shaping into resection cavities

    Get PDF
    In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 ”m-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HAHep sponges as modifiers of the GB ecosystem dynamics acting as “cell meeting rooms” and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures

    Insights into healthcare professionals’ perceptions and attitudes toward nanotechnological device application: What is the current situation in glioblastoma research?

    Get PDF
    Nanotechnology application in cancer treatment is promising and is likely to quickly spread worldwide in the near future. To date, most scientific studies on nanomaterial development have focused on deepening the attitudes of end users and experts, leaving clinical practice implications unexplored. Neuro-oncology might be a promising field for the application of nanotechnologies, especially for malignant brain tumors with a low-survival rate such as glioblastoma (GBM). As to improving patients’ quality of life and life expectancy, innovative treatments are worth being explored. Indeed, it is important to explore clinicians’ intention to use experimental technologies in clinical practice. In the present study, we conducted an exploratory review of the literature about healthcare workers’ knowledge and personal opinions toward nanomedicine. Our search (i) gives evidence for disagreement between self-reported and factual knowledge about nanomedicine and (ii) suggests the internet and television as main sources of information about current trends in nanomedicine applications, over scientific journals and formal education. Current models of risk assessment suggest time-saving cognitive and affective shortcuts, i.e., heuristics support both laypeople and experts in the decision-making process under uncertainty, whereas they might be a source of error. Whether the knowledge is poor, heuristics are more likely to occur and thus clinicians’ opinions and perspectives toward new technologies might be biased

    The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    Get PDF
    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-ÎČ-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network

    Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

    Get PDF
    International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment

    Franchissement de barriÚres biologiques, mécanisme d'action et devenir subcellulaire de nanovecteurs d'agents anticancéreux pour la thérapie des gliomes

    No full text
    En se focalisant sur l'administration de mĂ©dicaments dans et vers le systĂšme nerveux central et notamment pour le traitement du glioblastome, ce travail de thĂšse a eu pour but la mise en place d'outils expĂ©rimentaux et l'Ă©valuation du comportement de nanovecteurs au cours du franchissement de barriĂšres biologiques. Trois types de nanovecteurs de taille variant entre 20 et 100nm ont Ă©tĂ© apprĂ©hendĂ©s : des nanoparticules de polysaccharide, de PLGA et des nanocapsules lipidiques (LNC). Le comportement de ces objets vis-Ă -vis des Ă©lĂ©ments du sang a permis de dĂ©finir que le revĂȘtement par la transferrine de nanoparticules de PLGA et l'insertion de phospholipides ou de BSA dans des nanoparticules polysaccharidiques diminuait leur reconnaissance par le systĂšme rĂ©ticulo-endothĂ©lial et amĂ©liorait leur temps de rĂ©sidence plasmatique. Ces modifications de surface sont Ă©galement associĂ©es Ă  une possibilitĂ© d'internalisation dans les cellules cibles F98 de gliomes influencĂ©e essentiellement par la nature lipidique ou polymĂ©rique du vecteur. L'Ă©valuation prĂ©cise du comportement cellulaire et subcellulaire des LNC dans les cellules F98 a permis de dĂ©montrer que si la nature du vecteur est impliquĂ©e notamment en ce qui concerne le recrutement de voies d'endocytoses cholestĂ©roldĂ©pendantes, la taille, corrĂ©lĂ©e au taux de surfactant vĂ©hiculĂ©, est Ă©galement impliquĂ©e. Les LNC de 20nm sont ainsi les plus aptes Ă  permettre l'Ă©chappement lysosomal des principes actifs vĂ©hiculĂ©s et dĂ©montrent des activitĂ©s pharmacologiques renforcĂ©es notamment pour ce qui concerne la mort cellulaire induite par le paclitaxel. Ces rĂ©sultats Ă©tablissent donc un lien original entre le comportement subcellulaire des vecteurs et la biodisponibilitĂ© des agents anticancĂ©reux. De nouvelles potentialitĂ©s de franchissement de barriĂšres ligand- ou taille-dĂ©pendants ont Ă©tĂ© soulignĂ©es. Ces observations renforcent donc l'intĂ©rĂȘt d'Ă©tudes comparatives permettant de rationaliser l'utilisation d'un vecteur donnĂ© pour un mĂ©dicament et une cible donnĂ©s. Elles dĂ©montrent Ă©galement tout l'intĂ©rĂȘt d'Ă©tablir des justifications entre le comportement biologique et la pertinence thĂ©rapeutique des nanovecteurs.By focusing on drug administration within and to the central nervous system and notably on glioblastoma, the aim of the present PhD thesis work was to develop tools and evaluate the behavior of particulate nanocarriers as regards to biological barrier crossing. Three types of nanocarriers with sizes varying from 20 to 100 nm were evaluated: polysaccharide nanoparticles, PLGA nanoparticles, and lipid nanocapsules. The behavior of those objects concerning blood constituents allowed to define that coating with transferrine of PLGA nanoparticles or insertion of phospholipids or BSA within polysaccharide nanoparticles reduce their recognition by the reticulo-endothelial system and improve their plasma-resident time. Those surface modifications are also associated with a possibility of internalization in F98 glioma target cells essentially influenced by the lipid or polymeric nature or the carrier. Clear-cut evaluation of the cellular and subcellular behavior of LNC within F98 cells allowed to demonstrate that if the nature of the carrier is involved, notably considering the recruitment of cholesterol-dependant endocytic pathways, the size, correlated to amounts of surfactant provided, had also its significance. 20nm LNC are consequently the more apt to allow lysosome escape of transported drug and demonstrated higher pharmacological activities in inducing cell death through paclitaxel loading. Those results provide, therefore, original links between the subcellular behavior of nanocarrier and the bioavailability anticancer drugs. New potentialities of biological barrier crossing and size-dependent abilities were demonstrated. Those observations emphasize the interest of developing comparative studies in order to rationalize the use of a define nanocarrier for a given drug on a given target. Regarding new nanomedicines development, it demonstrates the importance to establish justification between biological behavior of nanocarriers and their therapeutic relevance.ANGERS-BU MĂ©decine-Pharmacie (490072105) / SudocSudocFranceF

    La ténascine-C:Une molécule de la matrice extracellulaire impliquée dans le développement du systÚme nerveux central

    No full text
    Composed of an etwork of different collagens, proteoglycans and glycoproteins, the extracellular matrix constitutes an essential substrate for tissular morphogenesis and provides support and flexibility to mature tissues. Moreover, it acts as an informational epigenetic entity in that it transduces and integrates extracellular signals from various receptors of the plasma membrane. Among the extracellular matrix molecules which are expressed during central nervous system (CNS) development, tenascin-C (TN-C) has a very singular pattern of expression based on its spatio-temporal distribution and synthesised isoforms. Numerous in vitro studies suggested specific roles for TN-C in CNS development, notably in neural precursor cells migration as well as in neurite guidance and outgrowth. Also, the production of TN-C null mutant, initially described without gross structural abnormalities, allowed to investigate in more details and in vivo the potential involvement of this glycoprotein in CNS ontogenesis. Recent works tend to emphasize ancient concepts but also to reveal new functions such as in the proliferation of oligodendrocyte precursor cells
    • 

    corecore