229 research outputs found

    Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans

    Get PDF
    BACKGROUND: Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular timings have been recently used to suggest that environmental global change have shaped the evolutionary history of diverse terrestrial organisms. Living xenarthrans (armadillos, anteaters and sloths) constitute an ideal model for studying the influence of past environmental changes on species diversification. Indeed, extant xenarthran species are relicts from an evolutionary radiation enhanced by their isolation in South America during the Tertiary era, a period for which major climate variations and tectonic events are relatively well documented. RESULTS: We applied a Bayesian approach to three nuclear genes in order to relax the molecular clock assumption while accounting for differences in evolutionary dynamics among genes and incorporating paleontological uncertainties. We obtained a molecular time scale for the evolution of extant xenarthrans and other placental mammals. Divergence time estimates provide substantial evidence for contemporaneous diversification events among independent xenarthran lineages. This correlated pattern of diversification might possibly relate to major environmental changes that occurred in South America during the Cenozoic. CONCLUSIONS: The observed synchronicity between planetary and biological events suggests that global change played a crucial role in shaping the evolutionary history of extant xenarthrans. Our findings open ways to test this hypothesis further in other South American mammalian endemics like hystricognath rodents, platyrrhine primates, and didelphid marsupials

    A glimpse on the pattern of rodent diversification: a phylogenetic approach.

    Get PDF
    BACKGROUND: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. RESULTS: Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. CONCLUSIONS: The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Astrocladistics: a phylogenetic analysis of galaxy evolution I. Character evolutions and galaxy histories

    Get PDF
    This series of papers is intended to present astrocladistics in some detail and evaluate this methodology in reconstructing phylogenies of galaxies. Being based on the evolution of all the characters describing galaxies, it is an objective way of understanding galaxy diversity through evolutionary relationships. In this first paper, we present the basic steps of a cladistic analysis and show both theoretically and practically that it can be applied to galaxies. For illustration, we use a sample of 50 simulated galaxies taken from the GALICS database, which are described by 91 observables (dynamics, masses and luminosities). These 50 simulated galaxies are indeed 10 different galaxies taken at 5 cosmological epochs, and they are free of merger events. The astrocladistic analysis easily reconstructs the true chronology of evolution relationships within this sample. It also demonstrates that burst characters are not relevant for galaxy evolution as a whole. A companion paper is devoted to the formalization of the concepts of formation and diversification in galaxy evolution.Comment: 16 pages, 6 figure

    PhySIC_IST: cleaning source trees to infer more informative supertrees

    Get PDF
    Background: Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. Results: To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC IST that can infer non-plenary supertrees. PhySIC IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa

    Astrocladistics: a phylogenetic analysis of galaxy evolution II. Formation and diversification of galaxies

    Get PDF
    This series of papers is intended to evaluate astrocladistics in reconstructing phylogenies of galaxies. The objective of this second paper is to formalize the concept of galaxy formation and to identify the processes of diversification. We show that galaxy diversity can be expected to organize itself in a hierarchy. In order to better understand the role of mergers, we have selected a sample of 43 galaxies from the GALICS database built from simulations with a hybrid model for galaxy formation studies. These simulated galaxies, described by 119 characters and considered as representing still undefined classes, have experienced different numbers of merger events during evolution. Our cladistic analysis yields a robust tree that proves the existence of a hierarchy. Mergers, like interactions (not taken into account in the GALICS simulations), are probably a strong driver for galaxy diversification. Our result shows that mergers participate in a branching type of evolution, but do not seem to play the role of an evolutionary clock.Comment: 14 pages, 4 figure

    The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies

    Get PDF
    BACKGROUND: Mitochondrial and nuclear genes have generally been employed for different purposes in molecular systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies at a deeper level. In the case of rapid and recent evolutionary radiations, mitochondrial genes like cytochrome b (CYB) are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae rodents (Rodentia; Muridae), the most impressive mammalian radiation of the Northern Hemisphere which produced voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker – the exon 10 of the growth hormone receptor (GHR) gene – to the one of the mitochondrial CYB for inferring phylogenetic relationships among the major lineages of arvicoline rodents. RESULTS: The analysis of GHR sequences improves the overall resolution of the Arvicolinae phylogeny. Our results show that the Caucasian long-clawed vole (Prometheomys schaposnikowi) is one of the basalmost arvicolines, and confirm that true lemmings (Lemmus) and collared lemmings (Dicrostonyx) are not closely related as suggested by morphology. Red-backed voles (Myodini) are found as the sister-group of a clade encompassing water vole (Arvicola), snow vole (Chionomys), and meadow voles (Microtus and allies). Within the latter, no support is recovered for the generic recognition of Blanfordimys, Lasiopodomys, Neodon, and Phaiomys as suggested by morphology. Comparisons of parameter estimates for branch lengths, base composition, among sites rate heterogeneity, and GTR relative substitution rates indicate that CYB sequences consistently exhibit more heterogeneity among codon positions than GHR. By analyzing the contribution of each codon position to node resolution, we show that the apparent higher efficiency of GHR is due to their third positions. Although we focus on speciation events spanning the last 10 million years (Myr), CYB sequences display highly saturated codon positions contrary to the nuclear exon. Lastly, variable length bootstrap predicts a significant increase in resolution of arvicoline phylogeny through the sequencing of nuclear data in an order of magnitude three to five times greater than the size of GHR exon 10. CONCLUSION: Our survey provides a first resolved gene tree for Arvicolinae. The comparison of CYB and GHR phylogenetic efficiency supports recent assertions that nuclear genes are useful for resolving relationships of recently evolved animals. The superiority of nuclear exons may reside both in (i) less heterogeneity among sites, and (ii) the presence of highly informative sites in third codon positions, that evolve rapidly enough to accumulate synapomorphies, but slow enough to avoid substitutional saturation

    A glimpse on the pattern of rodent diversification:a phylogenetic approach

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes

    OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular sequence data have become the standard in modern day phylogenetics. In particular, several long-standing questions of mammalian evolutionary history have been recently resolved thanks to the use of molecular characters. Yet, most studies have focused on only a handful of standard markers. The availability of an ever increasing number of whole genome sequences is a golden mine for modern systematics. Genomic data now provide the opportunity to select new markers that are potentially relevant for further resolving branches of the mammalian phylogenetic tree at various taxonomic levels.</p> <p>Description</p> <p>The EnsEMBL database was used to determine a set of orthologous genes from 12 available complete mammalian genomes. As targets for possible amplification and sequencing in additional taxa, more than 3,000 exons of length > 400 bp have been selected, among which 118, 368, 608, and 674 are respectively retrieved for 12, 11, 10, and 9 species. A bioinformatic pipeline has been developed to provide evolutionary descriptors for these candidate markers in order to assess their potential phylogenetic utility. The resulting OrthoMaM (Orthologous Mammalian Markers) database can be queried and alignments can be downloaded through a dedicated web interface <url>http://kimura.univ-montp2.fr/orthomam</url>.</p> <p>Conclusion</p> <p>The importance of marker choice in phylogenetic studies has long been stressed. Our database centered on complete genome information now makes possible to select promising markers to a given phylogenetic question or a systematic framework by querying a number of evolutionary descriptors. The usefulness of the database is illustrated with two biological examples. First, two potentially useful markers were identified for rodent systematics based on relevant evolutionary parameters and sequenced in additional species. Second, a complete, gapless 94 kb supermatrix of 118 orthologous exons was assembled for 12 mammals. Phylogenetic analyses using probabilistic methods unambiguously supported the new placental phylogeny by retrieving the monophyly of Glires, Euarchontoglires, Laurasiatheria, and Boreoeutheria. Muroid rodents thus do not represent a basal placental lineage as it was mistakenly reasserted in some recent phylogenomic analyses based on fewer taxa. We expect the OrthoMaM database to be useful for further resolving the phylogenetic tree of placental mammals and for better understanding the evolutionary dynamics of their genomes, i.e., the forces that shaped coding sequences in terms of selective constraints.</p

    Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: A relaxed molecular clock study within xenarthrans

    Get PDF
    Background: Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular timings have been recently used to suggest that environmental global change have shaped the evolutionary history of diverse terrestrial organisms. Living xenarthrans (armadillos, anteaters and sloths) constitute an ideal model for studying the influence of past environmental changes on species diversification. Indeed, extant xenarthran species are relicts from an evolutionary radiation enhanced by their isolation in South America during the Tertiary era, a period for which major climate variations and tectonic events are relatively well documented. Results: We applied a Bayesian approach to three nuclear genes in order to relax the molecular clock assumption while accounting for differences in evolutionary dynamics among genes and incorporating paleontological uncertainties. We obtained a molecular time scale for the evolution of extant xenarthrans and other placental mammals. Divergence time estimates provide substantial evidence for contemporaneous diversification events among independent xenarthran lineages. This correlated pattern of diversification might possibly relate to major environmental changes that occurred in South America during the Cenozoic. Conclusions: The observed synchronicity between planetary and biological events suggests that global change played a crucial role in shaping the evolutionary history of extant xenarthrans. Our findings open ways to test this hypothesis further in other South American mammalian endemics like hystricognath rodents, platyrrhine primates, and didelphid marsupials.Facultad de Ciencias Naturales y Muse
    corecore