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Astrocladistics: a phylogenetic analysis of galaxy evolution

I. Character evolutions and galaxy histories
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Abstract. This series of papers is intended to present astrocladistics in some detail and evaluate this methodology in recon-
structing phylogenies of galaxies. Being based on the evolution of all the characters describing galaxies, it is an objective way
of understanding galaxy diversity through evolutionary relationships. In this first paper, we present the basic steps of a cladistic
analysis and show both theoretically and practically that it can be applied to galaxies. For illustration, we use a sample of
50 simulated galaxies taken from the GALICS database, whichare described by 91 observables (dynamics, masses and lumi-
nosities). These 50 simulated galaxies are indeed 10 different galaxies taken at 5 cosmological epochs, and they are free of
merger events. The astrocladistic analysis easily reconstructs the true chronology of evolution relationships within this sample.
It also demonstrates that burst characters are not relevantfor galaxy evolution as a whole. A companion paper is devotedto the
formalization of the concepts of formation and diversification in galaxy evolution.
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1. Introduction

Classification is a very human act to release memory and understand relationships between different kinds of objects. Systematics
is the science of classification of living organisms. It teaches us that there are three ways of comparing complex objectsgenerated
during the course of evolution: appearance, global similarity and common history.

The first approach was used by the Greeks (Aristotle) and until the 18th century. It was based on the selection of one or very
few obvious patterns of living organisms. This selection was necessarily subjective and with the discovery of more and more
specimens during the Middle Ages, numerous classificationsappeared. They became rapidly awkward, incompatible with one
another, and unsatisfactory in the representation of the origin of the observed diversity (see e.g. Knapp 2000).

In comparison, extragalactic astrophysics is a very young science beginning when Hubble discovered the true nature of
galaxies in 1922 (Hubble 1922). He rapidly felt the need to classify these new objects using the only information he had, i.e.
morphology (Hubble 1926 and Fig. 1 below). In an attempt to understand the relations between the three classes ellipticals, spirals
and barred spirals, he subsequently introduced evolution and devised his famous tuning fork diagram (Hubble 1936). Since then,
the most successful galaxy classifications consisted in variations on this scheme (de Vaucouleurs 1959, Sandage 1961, Roberts
& Haynes 1994, Kormendy & Bender 1996, van den Bergh 1998) while getting rid of the original evolution significance of this
diagram.

Nowadays, a new revolution is in progress, extragalactic astronomy living a fascinating expansion with the advent of huge and
sensitive telescopes. Amazing observed details reveal thecomplexity and diversity of galaxies, and more precise dataon distant
galaxies compel us to build the evolutionary history of galaxies as a whole. The nature of the very first objects, still speculative,
becomes more and more constrained between initial density fluctuations, observed through the cosmic background at 2.7 K,
and the most distant galaxies known, for which distance records are regularly beaten (Steidel 1999, Pello, Schaerer, Richard,
Le Borgne and Kneib 2004). Consequently many appellations,supposedly more limited in scope than the Hubble classification,
exist. They are also based on appearance using specific observational criteria (radio emission, Lyman break spectral feature,
activity in the nucleus, starbursts, dwarf or giant galaxies, etc.). Traditional classification is thus challenged, both because the
number of observed objects rules out the eye-based work still required to determine the morphology of a galaxy, and more
fundamentally because this quasi mono-parameter approachis obviously inadequate to encompass the diversity and complexity
of galaxies through their evolutions.

The second approach to classification is global similarity now known as multivariate analysis. It was introduced by Adanson
(1763) in an attempt to correct subjectivity in the choice ofclassifying characters: Nature should decide which ones are important,
not human beings. Multivariate analysis, known as phenetics in biology, thus takes all describing characters available at the
epoch of study. It has been an incredibly successful idea widely used in biology until the end of the 20th century and is still very
useful in many disciplines. To our knowledge, only a few attempts have been undertaken in astrophysics for a truly multivariate
(not considering solely morphology) galaxy classification(see e.g. Whitmore 1984, Watanabe, Kodaira and Okamura 1985)
while it is widely used for astronomical data analysis (e.g.Feigelson and Babu 2003, Corbin, Urban, Stobie, Thompson and
Schneider 2001).

The third approach is related to the hierarchical organization of biological diversity that was found quite early in theMiddle
Ages. Later, Linné devised his still used nomenclature accordingly. But this scheme of relationship between species was explained
only in the 19th century with the discovery of evolution through natural selection by Darwin (1859). Evolution creates diversity
and hierarchy is caused by the so-called branching evolution: one species gives birth to descending species (see Fraix-Burnet,
Douzery, Choler and Verhamme 2004, hereafter Paper II). Since a living organism is described by its constituents and their
properties, its evolution is nothing else than the evolution of all its characters and their interactions. It is only in the mid-20th
century that this fact was used to build a new methodology to derive phylogenies, called cladistics (Hennig 1965). Essentially
all published trees of life now use this methodology (see forinstance Stewart 1993, Brower, de Salle and Vogler 1996). Inthis
view, two (or more) objects are related if they share a commonhistory, that is they possess properties inherited from a common
ancestor. It is important not to be confused between evolution of individuals (genealogy) and evolution of species theyrepresent
(phylogeny). Cladistics is only concerned with the latter.

In astrophysics, Hubble remains the only author to have usedevolution in the design of his morphological classification
scheme. Too often, people try to model and understand evolution along the Hubble tuning fork diagram as if this artificial ar-
rangement of the different morphologies is an observational fact. Indeed, astrophysicists roughly understand most of the physical
and chemical processes at work in galaxies (including morphology) and are able to model them reasonably well. They now face
the problem of synthesising all such knowledge and all such observations.

Because galaxies are defined as independent gravitational groups of stars, gas and dust, their evolution is dictated by the
evolution of their constituents. Hence, Fraix-Burnet, Choler and Douzery (2003) introduced ’astrocladistics’ in an attempt to
apply cladistics to galaxies. Van den Bergh (2003, private communication) and Keel(2002) also considered this possibility inde-
pendently. Fraix-Burnet (2004) presents an overview of theprogress of astrocladistics which have now tackled severalsamples
of galaxies.

In the present two companion papers (this one and paper II), we present the fundamentals of astrocladistics. This first paper
concentrates on the applicability of cladistics to objectslike galaxies, emphasizing also the practical course of theanalysis.
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The second paper is devoted to the formalization of the concepts of formation and evolution of galaxies by examining the
diversification processes.

In these two papers, we make use of simulated galaxies from the GALICS project in which galaxy formation and evolution
is simulated from a redshift of 30 to 0 (0 being the present time). Even though most of the physics leading from dark matter
fluctuations to baryonic objects is still not well understood, such numerical simulations begin to study the entire history of
galaxy formation as well as the origin of galaxy diversity. In this first paper, a sample is used to show that chronology canbe
reconstructed by a cladistic analysis, while with another sample in the second paper it is shown that galaxy diversity can be
arranged on a tree-like structure.

In Sect. 2 of the present paper, we show that, theoretically,galaxies are suitable objects for a phylogenetic analysis.This is
illustrated in Sect. 3 with the detailed presentation of a cladistic analysis making it obvious that all the ingredientsare available
for an application to galaxies. In Sect. 4, after a brief introduction to the GALICS database, we describe how we defined and
selected our sample. Results are described in Sect. 5, whilea discussion can be found in Sect. 6. Summary and conclusion are
given in Sect. 7.

2. Astrocladistics: general principles

2.1. Systematics and cladistics

The two fundamentals of cladistics are in no way related to the kind of objects being studied: (i) diversity generated by evolu-
tionary processes, (ii) hierarchical (tree-like) organization of this diversity due to the branching type of evolution (Wiley, Siegel-
Causey, Brooks and Funk 1991, Brower 2000, Paper II). On the practical side, cladistics requires objects that can be described
by characters for which transformation can be documented. For instance, alongside biology, it is used in linguistics (Wells 1987),
stemmatics (study of ancient books: Robinson & Robert 1996)and even in manufacturing organization (e.g. Tsinopoulos &
McCarthy 2000).

Innovations appearing in an ancestral species propagate themselves through all its descendants. Cladistics relates objects by
identifying these innovations called synapomorphies, i.e. shared derived (=evolved) character states. Reality is more complicated
since the same innovations can appear independently at different times in different species and converge through different evolu-
tionary paths (convergences) or even disappear at a later time (reversals). These processes, called homoplasies, bring noise but
can be identified in the cladistic analysis.

Cladistics is a methodology, a tool to synthetically visualize informative evolution data as well as hypotheses. It does not
reveal the “true” evolutionary tree, but merely a possible one given the available data, current knowledge, identified hypotheses
and chosen criteria (Wiley et al. 1991, see Sect. 3). It has a very powerful interpretive and predictive power regarding the
evolutions of all characters because the final evolutionaryscenario must be entirely consistent with all the input information. The
assumption of branching evolution is thus evaluated in the same process.

Cladistics is not concerned with objects as individuals, but rather with species. It is not an analysis of the genealogy (who
is parent of whom) but of the phylogeny (who is the cousin of whom). It is not aimed at identifying the ancestor of a group
of objects, because this ancestor is generally not available to the present day observer of living organisms or galaxies. Rather,
cladistics groups together objects that share a common ancestor (see e.g. Wiley et al. 1991).

2.2. On the evolution of galaxies

Galaxies are independent groups of stars, gas and dust. These constituents, with all their properties (or characters),bothdefine
anddescribea galaxy. They evolve by themselves, through interactions with one another and under external perturbations. They
are the evolution of galaxies and galaxy species (Vilchez, Stasinska and Perez 2001, Sauvage, Stasinska and Schaerer 2002,
Hensler, Stasinska, Harfst, Kroupa, and Theis 2003).

The formation of a galaxy is the gathering of these elements in one gravitational entity, each one with its own history. The
merging of two galaxies is the mixing together of their constituents whose properties can be seriously modified by the associated
perturbations. An interaction of a galaxy with its environment (gas, gravitational potential due to other galaxies or dark matter)
often strongly affects its internal constituents (starbursts, accretion or sweeping of gas, collapse onto central black hole, ...): the
galaxy might afterwards look significantly different, as it would if it belonged to a new type or class or species. All these formation
and diversification processes imply the transmission of theproperties of the previous galaxy to the new one, with modification of
some of the properties depending on the evolutionary driver. This characterizes a branching evolution as discussed in more detail
in Paper II.

Hence, galaxies are good candidates for a cladistic analysis both because their evolution creates diversity and because the evo-
lution of their fundamental constituents can be observed, interpreted and predicted through observations and physical/chemical
models. Such an analysis can tell us the evolutionary relationships among different classes of galaxies, through a synthesis of the
evolutions ofall the physical and chemical processes as contained in the input characters. These are observable descriptors of the
fundamental constituents. In astrophysics, the characters are to be found in spectra: absolute luminosities, coloursor flux ratios,
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Fig. 1. Illustration of how the Hubble tuning fork diagram can be obtained from a cladistic analysis.mandb are the two characters
“morphology” and “bar” respectively. “0” stands for absence (of spiral arm or bar), “1” meaning presence. The slashes on
branches indicate a change in one character state. For instance, to go from type E to type S, one needs to modify the state of
characterm (from 0 to 1). This tree is said to have two steps (two character state changes altogether).

kinematic information, spectral line properties. Morphology is not adequate because it is subjective (essentially determined by
eye) and qualitative. More importantly, it is included in kinematical characteristics because the apparent morphology of a galaxy
essentially reflects the 3-dimensional motions of the stellar population but is always observed as a 2D projection only.

What we call “classes” or “species” will be definedafter the analysis of a large sample of galaxies is done, that is after the
evolutionary relationships are better understood. In cladistics, two taxa are grouped together if they share some common derived
character states (see Sect. 3.4) which are supposed to have been inherited from a common ancestor. Astrocladistics willthus lead
us toward a new taxonomy, that is toward a new classification and nomenclature. Before that can be made, and particularly in
this paper, each individual galaxy is considered as a representative of a class (see Sect. 3.2). We also use the word “class” in a
generic manner, and avoid the word “type” because it is inevitably linked to the Hubble morphological classification.

3. Phylogenetic analysis of galaxies using cladistics

This section is intended to outline the basic steps of a cladistic analysis, with emphasis on its general application to galaxies,
and giving specific parameters used in the analysis of the sample introduced in Sect. 4. It is not a thorough presentation of this
methodology which can be found in many places (e.g. Wiley et al. 1991).

3.1. Outline

The principal qualities of a cladistic analysis are objectivity and transparency. Practically, the objects under study are described
by evolutionary characters (Sect. 3.3) for which at least two states are defined (Sect. 3.4): one is said to be ancestral, the other
one is said to be derived. Most often, this evolution orientation is known for a very few characters only, increasing the number of
possible phylogenies. The derived state corresponds to an innovation in the evolution and is assumed to have been acquired by an
unidentified ancestor. In cladistics, objects are grouped from thederivedcharacter states they share, encompassing the ancestor
and all its descendants after transformation from the ancestral state. The basic ingredient to the analysis is thus a matrix scoring
for all taxa the states for all characters (Sect. 3.4).

Because cladistics assumes branching evolution, the evolutionary relationships are represented on a tree or cladogram. The
process for finding the trees is very basic and can be done by hand. This is illustrated on Fig. 1 which schematically demonstrates
how the Hubble diagram can be obtained from a cladistic analysis. Let us consider three galaxy classes and two characterswith
two states: morphology (spiral or elliptical) and bar (present or absent). Assuming these states represent evolution and considering
the changes of character states necessary to evolve from onetype to the other, we can build an unrooted cladogram which happens
to be exactly the Hubble tuning fork diagram. To root the cladogram, one should decide, at least for one character, which state is
ancestral (Sect. 3.6). For instance, Hubble thought that ellipticals become spirals with time. Hence he would have defined ’0’ as
ancestral state for characterm. Nowadays, the reverse is preferred, which would make ’0’ the derived state.

The goal of astrocladistics can be viewed as to extend this exercise to all possible descriptors (for better objectivity) and many
more classes of galaxies (for better coverage of galaxy diversity). This is presented in Sect. 3.7.

Finally, there are some statistical methods to assess the robustness of the result trees (Sect. 3.8) which must be used before
trying a thorough interpretation (Sect. 3.9).

3.2. Choice of a sample

The aim of astrocladistics is to group objects from homologies. But there are millions of galaxies in the Universe, the nature
and composition of the very first objects are unknown (groupsof stars, gas overdensities ?), so that there might well be several
different kinds of initial seeds of galaxies. Thus picking up galaxies that might have relatively close evolutionary relationships is
somewhat like a fishing experience at such an exploratory stage.
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There are at least two possible approaches: i) use probability estimates of close relationships within the original sample and
then group objects accordingly before performing the cladistic analysis (e.g. Wiens 2001 and references therein), ii)assume one
object - one class and let the cladistic analysis identify groups from evolutionary considerations. For these first developments of
astrocladistics, we have favoured the second approach to avoid possible biases of pre-classification introduced by thefirst one.
Later on, it would be certainly interesting to compare the two. We also try to begin with galaxies that belong spatially tothe same
group or cluster because they more probably have derived from the same kind of initial seeds and evolved in the same global
environment. This is however not the case in the two present companion papers that use simulated galaxies.

Even if millions of galaxies are currently known, a tiny fraction of them are described with more than a dozen observables.
Currently, between about 50 to 100 characters can be obtained for a few hundred galaxies which are all quite close to us, hence
very evolved. Thanks to space and big aperture ground-basedtelescopes, this is changing rapidly. A future developmentwill be to
extract from the medium or high resolution spectra the adequate information to be used by methodologies such as astrocladistics.
Nevertheless, since galaxies might not be as complex objects as living organisms, it is thus highly probable that the numbers
of pertinent characters will not be significantly more than one or two hundred. This is still much higher than in Hubble’s time,
and large enough to define many classes. As technology improves, as knowledge increases, new characters become available
requiring analyses of the same groups of objects to be redoneperiodically. Hence, classifications must evolve and are never
definitive.

3.3. Building the matrix

In order to remain as objective as possible, it is preferablenot to choose characters a priori, but rather to take all the ones available
at the time of study and let the analysis reveal possible inconsistencies in character behaviours. Ideally, charactersshould be
independent regarding evolution. One first obvious reason is to avoid redundancy of information and overweight of a single
evolutionary process. A second less obvious reason is to ensure a better statistical significance of the resulting evolutionary
scheme by minimizing possible conflicts between character evolutions. Also, the use of the parsimony criterion (as willbe
described in Sect. 3.7) emphasizes characters that do not change too much nor too erratically. However the requirement of
character independence is not so easy to satisfya priori and should be re-analysed afterwards. Note that two characters can be
independent andapparentlycorrelated (for instance metallicity and mass of galaxies can both increase with evolution but are not
necessarily physically related). Differential weights can be given to characters, but this will not be considered in this series of
papers.

Two unique particularities of astrophysical observationsare not usual to cladists: uncertainties and upper/lower limits.
Because they are quite informative and common, they should be included. Physical data are meaningless if they are not ac-
companied by an estimation of the accuracy of the measurement. These can be treated in the analysis either by a weight matrix
or in the coding process (see following section). Upper and lower limits generally result from limited sensitivity of the detectors
and/or conditions of observations (bad seeing, background sky brightness, source confusion, etc.). Hence, in a given sample and
for a given character, they do not always correspond to extreme ends of ranges of values. They also do not reveal the distribution
of values below (above) the lower (upper) limit. Thus, when possible, they can be in one bin at either end of the codings.

3.4. Coding the matrix

Astrophysical observables are in general continuous values. There are strong debates on whether or not such data shouldbe
used in biology (e.g. Rae 1998), but astronomers have no choice. Yet, we think their use is totally legitimate in the case of
galaxies because the change of characters is mainly gradualand totally reflects evolution. That being said, there remain several
possibilities to code such values. Thorough investigations will have to be performed in the future.

For a cladistic analysis, at least two evolutionary states should be identified for each character: an ancestral state and a derived
state. Depending on the character, depending on the sample,characters can be coded into several states. Continuous data should
be binned, and unknown values are allowed.

Upper or lower limits are not explicitly treated as such in current cladistic software. Nevertheless they can be considered as
real values if they correspond to upper or lower bins and possibly be attributed a lower weight. Uncertainties can be treated in two
ways. First, bins can be chosen to be significantly larger than the error bars of the data. Second, it is always possible to do several
analyses with slightly different codings and compare results. No upper/lower limits nor error bars are present in our GALICS
sample, so we do not discuss this point any further.

For the simulated sample of this paper, we attributed eight evolutionary states to each character by regularly binning the
corresponding range of values among all galaxies. For photometric characters, three kinds of such coding have been performed :
using flux values, magnitudes, and colours with respect to the Johnson K band, and comparing the results (Sect. 5.1).
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3.5. Introducing additional constraints

The more information is given initially, the more constrained and robust the result will be. For a given group of taxa, themore
characters the better. But any knowledge on the evolutions of these characters is also extremely useful to help eliminate some
evidently impossible evolutionary scenarios. This also constitutes a means to test different hypotheses or models.

In this paper, we impose that all characters evolve smoothlywith time, that is they are all supposed to be ordered: changes
between two adjacent states are more parsimonious (see Sect. 3.7) than between distant ones. In other words, big jumps are
supposedly less probable than gentle character evolution.This hypothesis is physically sensible in the case of galaxies and we
found that it significantly improves the robustness of trees.

3.6. Defining the outgroup

Defining evolutionary states only yields an unrooted tree because the arrow of time is not indicated. Time behaviour of atleast
some characters is required to root the cladogram. This can be introduced in the additional constraints and/or by defining a
comparison group (’outgroup’) which is a real or hypothesized taxon having some identified ancestral states. This outgroup
should be outside the studied sample and share a common ancestor with it, even if in practice it is often regarded as part ofthe
sample. Hence it should be neither too far nor too close in theevolutionary diversification. The choice of the outgroup isalways
delicate and rarely unique. The detailed interpretation ofthe resulting phylogeny for the group of study depends on this choice,
but the classes of possible phylogenies are revealed even onan unrooted tree.

In astrophysics, determining potential outgroups for the sample under study is at present nearly impossible. In general, it
could be possible to build an artificial outgroup because some characters have a known global evolution through the lifetime of
the Universe. For instance, the metallicities and the masses of galaxies are expected to increase because stars gradually transform
light atomic elements (hydrogen, helium) into heavier ones(oxygen, carbon) and gravity makes galaxies bigger with time via
accretions and mergers. But locally, an accretion of a big cloud of hydrogen gas can diminish the average metallicity of agalaxy,
and through interactions galaxies can be torn apart into smaller pieces.

In this paper, we decided not to root the trees, because this part of our work is intended to demonstrate that physical descriptors
of galaxies do trace their evolution and show how astrocladistics reconstruct the chronology. For display purposes only, we
assume that epoch 1 galaxies are closer to the ancestor common to the entire group. This is equivalent to defining an outgroup,
but here it is an arbitrary choice which we consider sufficient for the present work.

3.7. Finding the best trees

For a given matrix (a set of taxa and coded characters), the number of possible trees is huge and grows as (2n− 3)!/2n−2(n− 2)!
wheren is the number of objects (Swofford, Olsen, Waddell and Hillis 1996). For more than 4 objectswith 4 characters, the
process of finding trees is not tractable by hand any more (seeSect. 3.1) and computers are required. There are several software
packages available. We used the PAUP4b10* package (Swofford 2003) on Linux PC computers to perform all calculations shown
in this paper.

To choose among the huge amount of possible trees, a usual criterion is maximum parsimony: the total number of character
state changes (so-called ’steps’) on the tree is minimized.This also minimizes the number of homoplasies (convergences or
reversals in character evolution) which perturbs the grouping in evolutionary classes. If several most parsimonious trees are
found, then a ’consensus’ tree can be built.

In this paper, because the sample was arbitrarily chosen, galaxies have a chance to be too distant in the evolutionary diver-
sification. It is also possible that there exist different evolutionary pathways, with several very different ancestors. This prevents
a good relationship to be found and leads to a largely unresolved tree. Our strategy was to find a sub-sample that yields a fully
resolved tree. For this purpose, we eliminated taxa one by one, running the analyses and comparing the number of bootstrap
values above 50% (Sect. 3.8 for details on bootstrap method)on all the resulting trees: the best resolved tree was kept and the
corresponding taxon definitively eliminated before the same process started again with the new sub-sample. We thus ended up
with a robust tree concerning objects that can be said to be evolutionarily related.

In these two companion papers, we further attempted an analysis with all the eliminated galaxies since the number of char-
acters should be higher than the number of taxa to obtain a good resolution of the phylogeny. If a robust tree is found, thiswould
mean that it might either be a kind of redundant object with respect to the first tree or constitute another monophyletic group
with a different ancestor. Another strategy, not considered in these two companion papers, would be to place the eliminated taxa
onto the first tree. This could imply defining groups and wouldallow us to extend the cladistic analysis to other objects tobuild
progressively a phylogenetic classification of larger samples of galaxies.
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3.8. Assessing the phylogenetic signal in the data

After the most parsimonious trees are found, some statistical tests are performed in order to assess the robustness of the results.
Ideally, the phylogenetic signal (evolutionary information) should not depend on too few dominant characters becauseof possible
errors or uncertainties in the data, misbehaviours of thesecharacters or too high a dependence on current level of knowledge and
observational techniques. The bootstrap method (Felsenstein 1985, Efron & Tibshirani 1986) analyses the robustness of the tree
to noise in the sample through the percentage of times a node is found among results from resampled matrices (1000 in this
paper). These matrices are identical in size to the originalone, but each character column is randomly selected from theentire
initial set. Hence, a resampled matrix can have several times the same character and lack some of them. Bootstrap is therefore
a way to put random weights on individual characters, and then evaluate the ability of the tree-building method to recover the
initial nodes despite these differential character weightings. The Decay (or Bremer) indexindicates how many more steps on the
tree are needed to destroy the corresponding branch (Bremer1994). It measures the robustness of the supposedly-best tree which
has been selected using the parsimony criterion.

Two other indicators are generally given with each tree and can be computed for each character or globally. The Consistency
Index (CI) measures the difficulty of fitting a data set on a particular tree: it is the ratiobetween the minimum number of possible
steps (given by the data matrix) and the total number of stepsof the tree. It is always lower than 1 and a perfect phylogeny,i.e.
without homoplasy in the characters, analysis would give a CI of 1. This indicator can thus be used to examine the behaviour of a
given character on a particular tree. The Retention Index (RI) measures the level of similarities in the tree. In a sense,it measures
for the same matrix, the distance of the result tree to the worst case (totally unresolved tree due to total lack of phylogenetic
signal) and to the best one (perfect phylogeny with the result tree). RI behaves like CI, being larger in good situations (Wiley et
al. 1991).

3.9. Interpreting the cladograms

Two branches on the tree are linked by a node which representsthe collection of shared derived characters due to common
ancestry. A long branch with several nodes is called a lineage. All descendants characterized by unique derived characters
inherited from their common ancestor constitute a monophyletic (phylogenetic) group or clade. This is the basis of a phylogenetic
inference based on a cladogram.

Interpretation of the result is done by projecting the codedcharacters onto the branches of the cladogram. Self-consistencies
and estimation of global consistency with input data, hypotheses and other current thoughts on galaxy evolution and their physics,
helps one to conclude on the validity of the evolutionary scenario proposed by the cladistic analysis. Groupings find historical
explanations in the projected character evolutions along branches, and anomalies can be identified. Finally predictions may come
out for objects on the tree that have missing data.

4. A test sample: simulated galaxies without mergers

In this first paper, to simplify as much as possible the cladistic analysis and the interpretation of the results, a sampleof galaxies
that have never had any merger events was selected. Our goal here is to demonstrate that from observables describing galaxies,
that is characterizing their basic constituents, it is possible to reconstruct the historical relationships among a sample of galaxies.
Paper II describes in detail the processes of formation and diversification of galaxies and enlightens our choice some more.

4.1. Brief presentation of GALICS

GALICS (Galaxies In Cosmological Simulations) is a hybrid model for hierarchical galaxy formation studies, combiningthe
outputs of large cosmological N-body simulations with simple, semi-analytic recipes to describe the fate of the baryons within
dark matter haloes (Hatton, Devriendt, Ninin, Bouchet and Guiderdoni 2003). A galaxy appears when the density of baryonic
matter is above a given level corresponding to the resolution of the simulation. As hot gas cools and falls to the centre of
these haloes, it settles in a rotationally supported disc. Galaxies remain disc structures unless mergers or instabilities occur, in
which case simple recipes are used to develop a bulge and a burst components. Hence a galaxy is described by these three
components each one having its own parameters of geometry, dynamics, masses (stars and gas), metallicity and photometry from
the ultraviolet to the far infrared. Stellar and chemical evolution is modelled, but no interaction between galaxies are considered.

Each galaxy is identified by a specific number at each timestepof the simulation. Each galaxy is the product of one or more
galaxies of the previous step and one or more evolutionary processes that occurred since the previous step. The entire genealogy
of each galaxy is thus known. It is then possible to select galaxies that have never been the product of the merging of two ormore
galaxies.
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4.2. Problematics of selecting a sample

It must be mentioned that choosing galaxies for a phylogenetic analysis is not a trivial problem at this preliminary stage. Taking
objects too close in the evolution process hampers the diversity resolution. Conversely, if galaxies are too different (i.e. too much
diversified), it is difficult to find the evolutionary relationship. In both cases, itis difficult to find a robust tree. The problem lies
in the definition of similarity which is here taken in the evolutionary sense and can be really understood onlyafter a cladistics
analysis is made. Comparing objects in the traditional way (with a few apparent characters) or with a multivariate distance
analysis is not adequate because of probable homoplasies (see Sect. 2.1). One might hope to find galaxies identically described
based on coded characters. Unfortunately, a few tens of characters having a few states already makes a substantial number of
possibilities so we have not yet encountered such cases.

The problem would be certainly much simpler with simulated galaxies. However, we wanted to train ourselves by considering
the simulation as if it was the real Universe, with no genealogical information available to the observers. This information was
used only to select non-merger galaxies in the database and compare with our results afterwards.

As described in Sect. 3.7, a huge number of possible trees exist for a given set of objects and characters. The analysis is
thus very CPU time consuming and cannot be reasonably done with too many objects. We consider that about 50 is a good
compromise with our present knowledge of cladistic galaxy classification, and with the number of currently available descriptors
(characters). As already mentioned in Sect. 3.2 and as discussed in Paper II, at this stage of astrocladistics, each galaxy represents
a class to be defined later on.

4.3. The sample of galaxies without merger

We chose 10 galaxies at 5 epochs (simulation step 30, 40, 50, 60 and 70 corresponding to redshift of 3, 1.9, 1, 0.4 and 0). These
galaxies were arbitrarily chosen among all galaxies born atredshift 3 (simulation step of 30) and having experienced nomerging
during the time spanned by the 5 epochs. They are representative of classes, and named from An to Jn where n is the epoch (1 to
5), 1 being the most ancient one and 5 the present (redshift= 0).

In the GALICS database 91 characters are available to describe these galaxies and listed in Table 1. Two characters are global
(bolometric luminosity and infrared luminosity), the other ones describing the three components of GALICS galaxies: the disc
(31 characters), the bulge (27) and the burst (31). Most (3× 23) are broad band magnitudes ranging from U to 500 micron.
As explained in Sect. 5.1, all magnitudes are relative to theK band, this last value giving the relative heights of the spectra or
relative brightnesses between galaxies. The dynamical time tdyn is the time taken for material at the half-mass radius to reach
the opposite side of the galaxy (disk component) or its centre (bulge and burst components), whereas the star formation rate is
derived from this dynamical time, the mass of the cold gas anda prescribed star formation efficiency, either instantaneous at the
last time substep of the simulation or averaged over the laststep (Hatton et al. 2003).

5. Results

5.1. Flux, magnitudes or colours?

Even if all characters should be used in a cladistics analysis, it is important to avoid obvious biases. In astrophysics,an invaluable
source of information lies in the spectra, or here in the broad band magnitudes. But since a bright galaxy is very probablybright
at nearly all wavelengths, using these characters crudely would give too much weight to the galaxy luminosity. Rather, colours or
relative luminosities are much more informative about the different components in a galaxy and for evolution. We found thatthey
provide better robustness to the final tree, which tends to validate this statement. We will only consider the colour based result in
the rest of this paper.

Magnitudes are merely transcription (logarithmic) of fluxes. The choice among the two implies somewhat different distribu-
tions of objects into character codes and allows for different resolution of diversity. We believe that there is no general rule on this
point and both should be tried. On the present sample, the results were not very different in terms of relationships, and because
trees are found to be slightly more robust, we preferred coding logarithmic values (magnitudes).

5.2. Reconstructing the correct chronology

Is a character evolution based analysis such as cladistics able to figure out the correct chronology of galactic evolution? It is
possible to give the answer thanks to the simulated galaxiesof GALICS chosen in this work. We considered each of the 10
galaxies A to J at the 5 epochs, building 10 matrices with 5 objects. Analyses were then performed independently for each
matrix. In these conditions, the cladistic analysis finds excellent phylogenies as illustrated in Fig. 2 for galaxies A,C and I. All
trees do have the correct chronology, and all have bootstrapvalues of 100 except for galaxies C and I which have slightly lower
indexes.

The cladograms show that galaxies at epoch 5 are the most diversified when compared to galaxies at epoch 1. Branch length
represents number of character state changes, and are not directly related to a time scale. It should be noted that the results are
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1 bol lum 2 IR bol
3 discmcold 15 burstmcold
4 discmstar 11 bulgemstar 16 burstmstar
5 discmcoldz 17 burstmcoldz
6 disc rgal 12 bulgergal 18 burstrgal
7 discspeed 13 bulgespeed 19 burstspeed
8 disc tdyn 14 bulgetdyn 20 bursttdyn
9 discav sfr 21 burstav sfr

10 discinst sfr 22 burstinst sfr

23 discJOHNSONU* 46 bulgeJOHNSONU* 69 burst JOHNSONU*
24 discJOHNSONB* 47 bulgeJOHNSONB* 70 burst JOHNSONB*
25 discJOHNSONV* 48 bulge JOHNSONV* 71 burst JOHNSONV*
26 discJOHNSONR* 49 bulgeJOHNSONR* 72 burstJOHNSONR*
27 discJOHNSONI* 50 bulge JOHNSONI* 73 burst JOHNSONI*
28 discJOHNSONJ* 51 bulgeJOHNSONJ* 74 burstJOHNSONJ*
29 discJOHNSONK 52 bulgeJOHNSONK 75 burstJOHNSONK
30 discSCUBA 850mic* 53 bulgeSCUBA 850mic* 76 burstSCUBA 850mic*
31 discUV 1600Ang* 54 bulgeUV 1600Ang* 77 burstUV 1600Ang*
32 discUV 1500Ang* 55 bulgeUV 1500Ang* 78 burstUV 1500Ang*
33 discIRAS 100mic* 56 bulgeIRAS 100mic* 79 burstIRAS 100mic*
34 discIRAS 12mic* 57 bulgeIRAS 12mic* 80 burstIRAS 12mic*
35 discIRAS 25mic* 58 bulgeIRAS 25mic* 81 burstIRAS 25mic*
36 discIRAS 60mic* 59 bulgeIRAS 60mic* 82 burstIRAS 60mic*
37 discISOCAM 15mic* 60 bulgeISOCAM 15mic* 83 burstISOCAM 15mic*
38 discPACS110mic* 61 bulgePACS110mic* 84 burstPACS110mic*
39 discPACS170mic* 62 bulgePACS170mic* 85 burstPACS170mic*
40 discPACS75mic* 63 bulgePACS75mic* 86 burstPACS75mic*
41 discSIRTF 3 6mic* 64 bulgeSIRTF 3 6mic* 87 burstSIRTF 3 6mic*
42 discSIRTF 8 0mic* 65 bulgeSIRTF 8 0mic* 88 burstSIRTF 8 0mic*
43 discSPIRE250mic* 66 bulgeSPIRE250mic* 89 burstSPIRE250mic*
44 discSPIRE350mic* 67 bulgeSPIRE350mic* 90 burstSPIRE350mic*
45 discSPIRE500mic* 68 bulgeSPIRE500mic* 91 burstSPIRE500mic*

Table 1. List of characters.mstar, mcold and mcoldzstand respectively for the masses of stars, gas and metals.rgal is the
component radius,speedits rotation speed,tdyn the dynamical time,av sfr andinst sfr respectively average and instantaneous
star formation rates. See text for more details. Magnitudes(characters 23 to 91), for different broad band filters at different
wavelengths, that are starred, are relative to the K band of each component.

I1

I2

I3

I4

I5

90

100

C1

C2

C3

C4

C5

100

62

100

100

A1

A2

A3

A4

A5
20

Fig. 2. Evolution of the individual galaxies (A to J) obtained by 10 independent analyses of matrices with 5 objects corresponding
to the 5 epochs. All cladograms are most parsimonious trees.The cladograms that are not shown are all similar to the one for A.
Numbers are bootstrap values. Branch lengths are here proportional to the number of character state changes (tick mark indicates
20 steps) and are not directly related to a timescale.

obtained with all characters. As will be seen in Sect. 5.3, burst characters introduce noise and are certainly not very relevant for
galaxy evolution. Still, the results on the 10 sub-samples are excellent and could only be better yet without burst components.
Here the capability of astrocladistics to find the right history is thus demonstrated on a concrete basis.
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Fig. 3. Most parsimonious tree obtained with the whole sample and all characters after removal of 11 galaxies: B2, B3, C3, C4,
D1, E3, E4, G4, G5, H5 and J2. Numbers to the left of each node are bootstrap (above) and decay (below with a plus sign) values.
The number of steps (character state changes) for this tree is 1167 (scale bar on the left of figure indicates 10 steps), CI=0.49 and
RI=0.84 (see Sect. 3.8).

5.3. History of the whole sample keeping all characters

In the real world, we do not have the information on common ancestry. Hence, we have to hypothesize it and proceed with the
entire analysis in order to test this assumption by trying tofind the best tree. As described in Sect. 3.7, our procedure was to
exclude objects one by one until we find optimal bootstrap values on the result tree. Finally, 11 galaxies were so removed,and
we obtained the cladogram shown in Fig. 3 with the 39 remaining galaxies. Bootstrap values and decay indexes are excellent.

Going downward along the cladogram, it is possible to see that galaxies order themselves correctly in chronology from A1
taken as the root, to J5 after which the trend goes the other way to end up with C1 and H1 as the most diversified with respect to
A1. Changing the root to C5 or B4-B5 would make a tree diverging into two lineages. Both would be chronologically reversed
(from epoch 5 to epoch 1). Another option is that there could be two ancestors, A1 and C1 for instance, making the two lineages
to merge around C5-B4. The picture would not be a tree anymoreand in this case, separate analyses of the two lineages should
be done (see Sect. 5.4).

To understand Fig. 3 and make a reasonable choice for the root, it is useful to look at character evolution, and momentarily
assume that the number of character state changes (represented by branch lengths) is grossly proportional to time. As can be seen
in Table 2 (last 23 columns on the right), it is noticeable that galaxies B, C, G, H and J have no burst component (code ’7’ in
the table) at epoch 1 and all are at the bottom of the tree. Notealso that G, H and J have no burst component at all epochs. The
cladogram seems to indicate that the burst luminosity should rather smoothly decrease with time. Indeed, bursts are by definition
temporary events provoked by instabilities in the disk or accretion of gas. They can thus appear and disappear at nearly any time
as is the case for galaxy B2 and C2.

5.4. Two groups and two different ancestors?

At this stage of the analysis, two options are possible. The first one is to assume that, because galaxies ADEFI and BCGHJ
are born with different burst components, they could have two different ancestors. The same analyses have been performed on
each one of these subgroups. The resulting cladograms are shown on Fig. 4. They are both well resolved, especially because
no galaxy removal for optimization was necessary except only for B2. There are one or two little supported nodes on each tree
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Fig. 4. Most parsimonious trees obtained considering the whole sample contains two groups (ADEFI and BCGHJ) with two
different ancestors. Only B2 has been removed to obtain the cladogram on the right. Numbers to the left of each node are
bootstrap (above) and decay (below with a plus sign) values.Scale bar on the left of each cladogram indicates 10 steps. Tree for
ADEFI: steps=701, CI=0.50, RI=0.80. Tree for BCGHJ: steps=791, CI=0.69, RI=0.81 (see Sect. 3.8).

(bootstrap less than 60), but the other nodes show that the two ancestor hypothesis is a very plausible interpretation. By the way,
the chronology is perfectly respected in both diagrams.

The second option is to remove burst characters and is detailed in the next section.

5.5. Removing burst characters

Since burst characters are doubtful indicators of galaxy evolution, we have done the analysis of the entire sample (50 galaxies)
without them (characters 15-22 and 69-91 of Table 1 were ignored). Among the 60 remaining characters, the bulge photometry
ones (46-68) are identical in all galaxies but three (B3, B4,B5, see Table 2). This makes the total number of significantly
discriminant characters somewhat too low to hope to obtain avery robust cladogram for the 50 galaxies.

By the same optimization procedure described in Sect. 3.7 and used in Sect. 5.3, 20 galaxies were removed, leaving an
excellent cladogram with 30 objects (Fig. 5). The 20 excluded galaxies were analysed as well, and the cladogram in Fig. 6 has
been obtained without any optimization. The result is excellent, bootstraps are high and the true chronology well respected. There
is only one weakly supported node (bootstrap of 52) indicating an unresolved relationship or a few objects too diversified to fit
in this group.

We have thus identified two groups of galaxies, whose cladograms are globally better supported than those obtained from
the two ancestor hypotheses of the previous section. Here also we have two groups, but they have not been chosen a priori. As
said above, the rather low ratio of number of characters versus number of taxa prevents us from drawing conclusions on common
ancestry of these two groups. To definitively answer the question, one would need more discriminant characters, or begindefining
classes by analysing behaviour of all characters on the cladograms of Fig. 5 and Fig. 6. This is beyond the scope of this paper.
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Fig. 5. Most parsimonious tree obtained without burst characters and through optimizing the result by removing one galaxy after
another. Numbers to the left of each node are bootstrap (above) and decay (below with a plus sign) values. Steps=542 (scale bar
on the left of figure indicates 10 steps), CI=0.50 and RI=0.85.

6. Discussion

Among the different results presented in this paper, those shown in Fig. 5 and Fig. 6 (Sect. 5.5) are clearly the most satisfactory
because they are less affected by a priori subjective choice and the evolutionary scenario represented on the cladograms is
astrophysically plausible. On the contrary, the analysis using all characters (Sect. 5.3) is plagued by doubt on burst characters
as galaxy evolution indicators. The other results (Sect. 5.2 and Sect. 5.4) heavily depend on our a priori knowledge of lineages
available thanks to the simulations. They thus seem very artificial and cannot be representative of a real data set.

This illustrates the principal strength of astrocladistics in classifying galaxy diversity. The resulting cladogramis objectively
obtained, and can be accurately discussed on this basis. Particular points of debate can be:

1. character coding: several choices are possible, different results can be compared. Character values are all quantitative, influ-
ence of measure uncertainties can be examined.

2. evolution of characters: some knowledge or hypotheses can be put here, principally intended to increase tree robustness.
3. character weighting: extreme care should be taken when imposing weights on characters, probably useful when only up-

per/lower limits are known, or when uncertainties are large.
4. choice of outgroup: quite a difficult task because it is generally difficult to find the right one, especially at this stage of

astrocladistics.

The main result of the present paper is that the true chronology is easily found. This proves that (simulated) observables used
here to describe galaxies are certainly representative of their evolution, that is of the evolution of their fundamental constituents.
This is a clear demonstration that astrocladistics is well-founded. It is essential to note that these observables are available in real
galaxy catalogues.

Once again, galaxies here represent classes, or species, and this should be kept in mind when reading the cladograms. They
are not considered as individuals, we are not visualizing the development of an object through time, but rather the different classes
a galaxy belongs to during the course of the five epochs. This could be seen as if an individual galaxy can change class during
evolution, as is already noticed by van den Bergh (1998) for morphology and Hatton et al. (2003) in GALICS simulated galaxies.
However, as discussed in more detail in Paper II, we find this notion confusing regarding diversification. In astrocladistics, it is
preferable to focus on galaxy species: if a galaxy shows a newcharacteristic typical of a new class, then it should be considered
as a new galaxy that somehow have kept some characteristics of its parenthood. Hence these two classes should be close on the
tree.

In Fig. 5, objects of a given epoch are not always grouped together. Also, two galaxies seem to evolve at different rates,
depending also on epoch. This is because evolution does not take place only in time, but also in space. Even if two galaxies
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nodes with bootstrap higher than 50% are indicated. Steps=565 (scale bar on the left of figure indicates 10 steps), CI=0.66,
RI=0.80.

are born at the same epoch, they are not formed from the same material (stars, gas and dust), this material not having the same
history. In addition these two galaxies do not live in the same environment, and the internal instabilities have no chance to occur
at the same time and be of the same intensity. Sometimes, two epochs of the same galaxies are reversed on the tree (for instance
B1/B2, E4/E5, I1/I4). The explanation should be searched for through an analysis of character evolutions along the cladogram,
but this is out of the scope of this paper. In itself this fact is not a problem in view of what has been just said in the previous
paragraph. It should be noted that diversity is probably quite low in this sample of galaxies without merger and interaction events.

7. Conclusions

Because galaxies are complex objects in evolution, described and characterized by basic constituents (stars, gas and dust), the
prerequisites for a phylogenetic analysis using cladistics are satisfied. Using a sample of galaxies resulting from simulations of
galaxy formation and evolution, we demonstrate the correctness of our approach. Even on a very little diversified galaxygroup,
like galaxies with no merger and no interaction, cladisticsis able to reconstruct the right history from observables. We illustrate
the power of such a phylogenetic analysis in providing insights on galaxy physics. For instance, we pinpoint burst characters as
being not very pertinent to describe galaxy evolution because they are too variable.

We are certainly quite far from being able to depict the observed galaxy diversity on a general cladogram. The sample used
in this paper is made of galaxies that are too simple as compared to the real world. Other difficulties will certainly arise notably
when dealing with interacting objects. The question of the nature and composition of the very first objects can be crucialto the
usefulness of astrocladistics because it could multiply the number of different types of ancestors. But conversely, astrocladistics
is an excellent tool to investigate this problem, and only a long-range analysis would help. It is important to understand that many
developments are possible to improve the analysis shown in this paper: statistical tools can be used to pre-select some groups,
many trials could be made concerning character choice, evolution redundancy and variability, coding of continuous characters
should be studied in detail, use of medium and high resolution spectra should be investigated. But only real galaxies deserve as
a matter of priority such comprehensive studies.

Cladograms can somehow be seen as a large generalization of the Hubble diagram (Sect. 3.1). But they have much broader
implications and applications. Astrocladistics is a new philosophy for galaxy classification. Beyond paving the way toa new
taxonomy, it increases enormously our chances to one day understand galaxy evolution by identifying progenitor classes to
today’s galaxies back to the very first objects of the Universe.
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A1 5522317054017003037100567777202200000000000007777777777777777777777733333301113664633456211
A2 5443527044017105047200567776012211111111411117777777777777777777777755555502224665643546222
A3 4356747133027106057200445543022222222222632227777777777777777777777756666602344666644536222
A4 2007156100027107067300555443052245445444755557777777777777777777777766666602555666644536322
A5 1007056100027107067300665543073377777777777777777777777777777777777766666612665666644536322
B1 1120232111000000000000222111211112111111621117777777777777777777777777777777777777777777777
B2 1141453211003000013100444443122122222222622227777777777777777777777733344466116666666656666
B3 0002143200774700014100444433142144444444744440000000600656666666366677777777777777777777777
B4 0002043200774700014100777765263366666666666664556663345000000001003377777777777777777777777
B5 0002043200774700014100665543277777777777777776666656066563355630650077777777777777777777777
C1 0000001000000000000000112221601000000000200007777777777777777777777777777777777777777777777
C2 0000021100023370763677222221311111221112621117777777777777777777777722222250000000000000000
C3 0000122100033300073700455543222222222222622227777777777777777777777755555541223665633446211
C4 0001021100033300073700555443252255555555755557777777777777777777777766666642555666655636322
C5 0001021100033300073700665543377777777777777777777777777777777777777766666652665666655636322
D1 7772727077027104047200445554012101001110411117777777777777777777777732222201113665633466211
D2 4124456111027105067200433332032133333333733337777777777777777777777755555602234665643546222
D3 1004057100027105067200555443062256556555766667777777777777777777777755666612454665644536222
D4 1004057100027105067200665543075477777777777777777777777777777777777766666612664666644536222
D5 0004057100027105067200665543177777777777777777777777777777777777777766666622664666644536222
E1 3341425033015101045200556665112201000000311117777777777777777777777732233222114666644566222
E2 1002134100015101045200677776133233333333533337777777777777777777777755556622235666654646322
E3 0002034100015101045200555443162266666666766667777777777777777777777755666632455666654636322
E4 0002034100015101045200665543176677777777777777777777777777777777777766666632565666654636322
E5 0002034100015101045200766544277777777777777777777777777777777777777766666642665666654636322
F1 3331215033016001026100556666112201000000311117777777777777777777777721111121113664633466211
F2 3342536033026103056300556665112211111111411117777777777777777777777744555512224666644546322
F3 2002007000037107077300544443132233333333633337777777777777777777777755555502235666654646322
F4 0001007000037107077300665543175677777777777777777777777777777777777766666612555666654636322
F5 0001007000037107077300765543277777777777777777777777777777777777777766666622665666654636322
G1 0000031200000000000000211110321122222222722227777777777777777777777777777777777777777777777
G2 0000031200000000000000443332352155555555755557777777777777777777777777777777777777777777777
G3 0000031200000000000000554433362277777777777667777777777777777777777777777777777777777777777
G4 0000031200000000000000665443476677777777777777777777777777777777777777777777777777777777777
G5 0000031200000000000000665543477777777777777777777777777777777777777777777777777777777777777
H1 0010031200000000000000000000410011111111511117777777777777777777777777777777777777777777777
H2 0000020200000000000000332221331134444334743337777777777777777777777777777777777777777777777
H3 0000020200000000000000544433362266666666766667777777777777777777777777777777777777777777777
H4 0000020200000000000000655443476677777777777777777777777777777777777777777777777777777777777
H5 0000020200000000000000665543576777777777777777777777777777777777777777777777777777777777777
I1 0010002011003100023222111111400000000000300007777777777777777777777700000050000100000041000
I2 0000003010013100033300445554301100000000300007777777777777777777777722222241112653622366111
I3 0000122100013100033300434332221123332222732227777777777777777777777755555542335666654646322
I4 0011232100023201053500444433221122222222622227777777777777777777777755556642225666655646322
I5 0011242200023301063600444443231133333333733337777777777777777777777766666642666666665636322
J1 0000070700000000000000000000720023333223732227777777777777777777777777777777777777777777777
J2 0010141200000000000000222211321122222222722227777777777777777777777777777777777777777777777
J3 0000041300000000000000444433252256556555765557777777777777777777777777777777777777777777777
J4 0000041300000000000000555443372277777777777777777777777777777777777777777777777777777777777
J5 0000041300000000000000665543476777777777777777777777777777777777777777777777777777777777777

Table 2. Coded matrix with photometry values taken as colors with respect to the K-band for each component. Column numbers
correspond to character numbers listed in Table 1. This table is available on http://hal.ccsd.cnrs.fr/aut/fraix-burnet.


