550 research outputs found
Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials
Barriers and facilitators to initial and continued attendance at community-based lifestyle programmes among families of overweight and obese children: a systematic review
The success of childhood weight management programmes relies on family engagement. While attendance offers many benefits including the support to make positive lifestyle changes, the majority of families referred to treatment decline. Moreover, for those who do attend, benefits are often compromised by high programme attrition. This systematic review investigated factors influencing attendance at community-based lifestyle programmes among families of over-weight or obese children. A narrative synthesis approach was used to allow for the inclusion of quantitative, qualitative and mixed-method study designs. Thirteen studies met the inclusion criteria. Results suggest that parents provided the impetus for programme initiation, and this was driven largely by a concern for their child's psychological health and wellbeing. More often than not, children went along without any real reason or interest in attending. Over the course of the programme, however, children's positive social experiences such as having fun and making friends fostered the desire to continue. The stigma surrounding excess weight and the denial of the issue amongst some parents presented barriers to enrolment and warrant further study. This study provides practical recommendations to guide future policy makers, programme delivery teams and researchers in developing strategies to boost recruitment and minimise attrition
Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.
Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process
Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b
The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot
Neptune'--reveals itself by the dimming of light as it crosses in front of and
behind its parent star as seen from Earth. Respectively known as the primary
transit and secondary eclipse, the former constrains the planet's radius and
mass, and the latter constrains the planet's temperature and, with measurements
at multiple wavelengths, its atmospheric composition. Previous work using
transmission spectroscopy failed to detect the 1.4-\mu m water vapour band,
leaving the planet's atmospheric composition poorly constrained. Here we report
the detection of planetary thermal emission from the dayside of GJ 436b at
multiple infrared wavelengths during the secondary eclipse. The best-fit
compositional models contain a high CO abundance and a substantial methane
(CH4) deficiency relative to thermochemical equilibrium models for the
predicted hydrogen-dominated atmosphere. Moreover, we report the presence of
some H2O and traces of CO2. Because CH4 is expected to be the dominant
carbon-bearing species, disequilibrium processes such as vertical mixing and
polymerization of methane into substances such as ethylene may be required to
explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times
smaller than predicted
Circulating Biomarkers and Resistance to Endocrine Therapy in Metastatic Breast Cancers: Correlative Results from AZD9496 Oral SERD Phase I Trial.
PURPOSE: Common resistance mechanisms to endocrine therapy (ET) in estrogen receptor (ER)-positive metastatic breast cancers include, among others, ER loss and acquired activating mutations in the ligand-binding domain of the ER gene (ESR1LBDm). ESR1 mutational mediated resistance may be overcome by selective ER degraders (SERD). During the first-in-human study of oral SERD AZD9496, early changes in circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) were explored as potential noninvasive tools, alongside paired tumor biopsies, to assess pharmacodynamics and early efficacy. EXPERIMENTAL DESIGN: CTC were enumerated/phenotyped for ER and Ki67 using CellSearch in serial blood draws. ctDNA was assessed for the most common ESR1LBDm by droplet digital PCR (BioRad). RESULTS: Before starting AZD9496, 11 of 43 (25%) patients had ≥5 CTC/7.5 mL whole blood (WB), none of whom underwent reduction to <5 CTC/7.5 mL WB on C1D15. Five of 11 patients had baseline CTC-ER+, two of whom had CTC-ER+ reduction. CTC-Ki67 status did not change appreciably. Patients with ≥5 CTC/7.5 mL WB before treatment had worse progression-free survival (PFS) than patients with <5 CTC (P = 0.0003). Fourteen of 45 (31%) patients had ESR1LBDm + ctDNA at baseline, five of whom had ≥2 unique mutations. Baseline ESR1LBDm status was not prognostic. Patients with persistently elevated CTC and/or ESR1LBDm + ctDNA at C1D15 had worse PFS than patients who did not (P = 0.0007). CONCLUSIONS: Elevated CTC at baseline was a strong prognostic factor in this cohort. Early on-treatment changes were observed in CTC-ER+ and ESR1LBDm + ctDNA, but not in overall CTC number. Integrating multiple biomarkers in prospective trials may improve outcome prediction and ET resistance mechanisms' identification over a single biomarker
Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/HER2-negative advanced breast cancer: feasibility of precision oncology biomarker detection.
Nearly all estrogen receptor (ER)-positive (POS) metastatic breast cancers become refractory to endocrine (ET) and other therapies, leading to lethal disease presumably due to evolving genomic alterations. Timely monitoring of the molecular events associated with response/progression by serial tissue biopsies is logistically difficult. Use of liquid biopsies, including circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), might provide highly informative, yet easily obtainable, evidence for better precision oncology care. Although ctDNA profiling has been well investigated, the CTC precision oncology genomic landscape and the advantages it may offer over ctDNA in ER-POS breast cancer remain largely unexplored. Whole-blood (WB) specimens were collected at serial time points from patients with advanced ER-POS/HER2-negative (NEG) advanced breast cancer in a phase I trial of AZD9496, an oral selective ER degrader (SERD) ET. Individual CTC were isolated from WB using tandem CellSearch® /DEPArray™ technologies and genomically profiled by targeted single-cell DNA next-generation sequencing (scNGS). High-quality CTC (n = 123) from 12 patients profiled by scNGS showed 100% concordance with ctDNA detection of driver estrogen receptor α (ESR1) mutations. We developed a novel CTC-based framework for precision medicine actionability reporting (MI-CTCseq) that incorporates novel features, such as clonal predominance and zygosity of targetable alterations, both unambiguously identifiable in CTC compared to ctDNA. Thus, we nominated opportunities for targeted therapies in 73% of patients, directed at alterations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fibroblast growth factor receptor 2 (FGFR2), and KIT proto-oncogene, receptor tyrosine kinase (KIT). Intrapatient, inter-CTC genomic heterogeneity was observed, at times between time points, in subclonal alterations. Our analysis suggests that serial monitoring of the CTC genome is feasible and should enable real-time tracking of tumor evolution during progression, permitting more combination precision medicine interventions
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Vowel reduction in word-final position by early and late Spanish-English bilinguals
Vowel reduction is a prominent feature of American English, as well as other stress-timed languages. As a phonological process, vowel reduction neutralizes multiple vowel quality contrasts in unstressed syllables. For bilinguals whose native language is not characterized by large spectral and durational differences between tonic and atonic vowels, systematically reducing unstressed vowels to the central vowel space can be problematic. Failure to maintain this pattern of stressed-unstressed syllables in American English is one key element that contributes to a ?foreign accent? in second language speakers. Reduced vowels, or ?schwas,? have also been identified as particularly vulnerable to the co-articulatory effects of adjacent consonants. The current study examined the effects of adjacent sounds on the spectral and temporal qualities of schwa in word-final position. Three groups of English-speaking adults were tested: Miami-based monolingual English speakers, early Spanish-English bilinguals, and late Spanish-English bilinguals. Subjects performed a reading task to examine their schwa productions in fluent speech when schwas were preceded by consonants from various points of articulation. Results indicated that monolingual English and late Spanish-English bilingual groups produced targeted vowel qualities for schwa, whereas early Spanish-English bilinguals lacked homogeneity in their vowel productions. This extends prior claims that schwa is targetless for F2 position for native speakers to highly-proficient bilingual speakers. Though spectral qualities lacked homogeneity for early Spanish-English bilinguals, early bilinguals produced schwas with near native-like vowel duration. In contrast, late bilinguals produced schwas with significantly longer durations than English monolinguals or early Spanish-English bilinguals. Our results suggest that the temporal properties of a language are better integrated into second language phonologies than spectral qualities. Finally, we examined the role of nonstructural variables (e.g. linguistic history measures) in predicting native-like vowel duration. These factors included: Age of L2 learning, amount of L1 use, and self-reported bilingual dominance. Our results suggested that different sociolinguistic factors predicted native-like reduced vowel duration than predicted native-like vowel qualities across multiple phonetic environments
Development of an amplicon-based sequencing approach in response to the global emergence of mpox
The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by
CTSA Grant Number UL1 TR001863 from the
National Center for Advancing Translational
Science (NCATS), a component of the National
Institutes of Health (NIH) awarded to CBFV. INSA
was partially funded by the HERA project (Grant/
2021/PHF/23776) supported by the European
Commission through the European Centre for
Disease Control (to VB).info:eu-repo/semantics/publishedVersio
- …