10 research outputs found

    Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF Veterans and the impact of comorbid TBI☆

    Get PDF
    Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) in military personnel is increasing dramatically following the OEF/OIF conflicts and is associated with alterations to brain structure. The present study examined the relationship between PTSD and cortical thickness, and its possible modification by mTBI, in a 104-subject OEF/OIF veteran cohort ranging in age from 20 to 62 years. For each participant, two T1-weighted scans were averaged to create high-resolution images for calculation of regional cortical thickness. PTSD symptoms were assessed using the Clinician Administered PTSD Scale (CAPS) and scores were derived based on the previous month's symptoms (“current”) and a Cumulative Lifetime Burden of PTSD (CLB-P) reflecting the integral of CAPS scores across the lifetime. Mild TBI was diagnosed using the Boston Assessment of TBI-Lifetime (BAT-L). Results demonstrated a clear negative relationship between current PTSD severity and thickness in both postcentral gyri and middle temporal gyri. This relationship was stronger and more extensive when considering lifetime burden (CLB-P), demonstrating the importance of looking at trauma in the context of an individual's lifetime, rather than only at their current symptoms. Finally, interactions with current PTSD only and comorbid current PTSD and mTBI were found in several regions, implying an additive effect of lifetime PTSD and mTBI on cortical thickness

    Quantifiable magnetic resonance imaging changes in cerebral white matter and their importance to aging, cognition, and AD

    No full text
    Thesis: Ph. D., Harvard-MIT Program in Health Sciences and Technology, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 145-162).Alzheimer's disease (AD) is a neurodegenerative disease for which there are no preventative or therapeutic interventions. It is currently understood to be linked to the accumulation of pathologic proteins in the brain. In the past several decades, a strong body of evidence has accumulated that is suggestive of a vascular-related pathway in AD. A deeper understanding of this phenomenon is critical in advancing our understanding of the AD biological process as well and may lead to the discovery of novel therapeutic targets. A common age-related change in the brain is the development of white matter signal abnormalities (WMSA) as seen on magnetic resonance imaging (MRI). These lesions are related to cognitive function and are thought to be due to compromised integrity of the brain's vascular system. Despite evidence that WMSA are known to influence the clinical progression of AD, we do not currently view AD as a vascular disease nor do we use WMSA as a clinical indicator of AD. This is because we still do not know whether or not WMSA are a distinct phenomenon in AD, their relationship to traditional AD biomarkers, and how they independently contribute to clinical status. In this work, we examine if and how WMSA are related to AD conversion, whether they differ in their spatial distribution between typical aging and AD, and how they are linked to classic pathologic markers of AD. This work also includes technical development for WMSA quantification and baseline studies of WMSA in cognitively healthy aging. The main findings of this work suggest that WMSA are distinctly different in AD than in typical aging and have a unique role in AD progression. This not only motivates the utility of WMSA in our clinical treatment of AD, but also provides insight into the biological underpinnings of the disease process that may lead to novel therapeutic targets.by Emily Rose Lindemer.Ph. D

    Counties with Lower Insurance Coverage and Housing Problems Are Associated with Both Slower Vaccine Rollout and Higher COVID-19 Incidence

    No full text
    Equitable vaccination distribution is a priority for outcompeting the transmission of COVID-19. Here, the impact of demographic, socioeconomic, and environmental factors on county-level vaccination rates and COVID-19 incidence changes is assessed. In particular, using data from 3142 US counties with over 328 million individuals, correlations were computed between cumulative vaccination rate and change in COVID-19 incidence from 1 December 2020 to 6 June 2021, with 44 different demographic, environmental, and socioeconomic factors. This correlation analysis was also performed using multivariate linear regression to adjust for age as a potential confounding variable. These correlation analyses demonstrated that counties with high levels of uninsured individuals have significantly lower COVID-19 vaccination rates (Spearman correlation: −0.460, p-value: <0.001). In addition, severe housing problems and high housing costs were strongly correlated with increased COVID-19 incidence (Spearman correlations: 0.335, 0.314, p-values: <0.001, <0.001). This study shows that socioeconomic factors are strongly correlated to both COVID-19 vaccination rates and incidence rates, underscoring the need to improve COVID-19 vaccination campaigns in marginalized communities

    “Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets

    Get PDF
    Benchmark datasets have a powerful normative influence: by determining how the real world is represented in data, they define which problems will first be solved by algorithms built using the datasets and, by extension, who these algorithms will work for. It is desirable for these datasets to serve four functions: (1) enabling the creation of clinically relevant algorithms; (2) facilitating like-for-like comparison of algorithmic performance; (3) ensuring reproducibility of algorithms; (4) asserting a normative influence on the clinical domains and diversity of patients that will potentially benefit from technological advances. Without benchmark datasets that satisfy these functions, it is impossible to address two perennial concerns of clinicians experienced in computational research: “the data scientists just go where the data is rather than where the needs are,” and, “yes, but will this work for my patients?” If algorithms are to be developed and applied for the care of patients, then it is prudent for the research community to create benchmark datasets proactively, across specialties. As yet, best practice in this area has not been defined. Broadly speaking, efforts will include design of the dataset; compliance and contracting issues relating to the sharing of sensitive data; enabling access and reuse; and planning for translation of algorithms to the clinical environment. If a deliberate and systematic approach is not followed, not only will the considerable benefits of clinical algorithms fail to be realized, but the potential harms may be regressively incurred across existing gradients of social inequity.National Institutes of Health (Grant R01 EV017205
    corecore