129 research outputs found

    Historic Structure Report: 1428 West Baltimore Street

    Get PDF
    Advisory Committee: Dennis J. Pogue and Michele LamprakosThe purpose of this historic structure report is to provide a set of recommendations to guide future projects related to the commercial building located at 1428 West Baltimore Street, Baltimore, Maryland, currently vacant. The recommendations are based on the building’s history and significance, and a detailed investigation of the existing conditions. This historic structure report is composed of three sections: development history and context, existing conditions, and treatment recommendations. The recommendations are based on a rehabilitation approach and are designed to preserve the character-defining features of the structure while adapting it as necessary for future uses. The building is a contributing resource in the local and National Register Union Square – Hollins Market Historic District. Reflecting the development of urban America and Baltimore’s nineteenth century working class neighborhoods, the district is significant for its architecture and for communicating broad patterns of history

    Classifying publications from the clinical and translational science award program along the translational research spectrum: a machine learning approach

    Get PDF
    BACKGROUND: Translational research is a key area of focus of the National Institutes of Health (NIH), as demonstrated by the substantial investment in the Clinical and Translational Science Award (CTSA) program. The goal of the CTSA program is to accelerate the translation of discoveries from the bench to the bedside and into communities. Different classification systems have been used to capture the spectrum of basic to clinical to population health research, with substantial differences in the number of categories and their definitions. Evaluation of the effectiveness of the CTSA program and of translational research in general is hampered by the lack of rigor in these definitions and their application. This study adds rigor to the classification process by creating a checklist to evaluate publications across the translational spectrum and operationalizes these classifications by building machine learning-based text classifiers to categorize these publications. METHODS: Based on collaboratively developed definitions, we created a detailed checklist for categories along the translational spectrum from T0 to T4. We applied the checklist to CTSA-linked publications to construct a set of coded publications for use in training machine learning-based text classifiers to classify publications within these categories. The training sets combined T1/T2 and T3/T4 categories due to low frequency of these publication types compared to the frequency of T0 publications. We then compared classifier performance across different algorithms and feature sets and applied the classifiers to all publications in PubMed indexed to CTSA grants. To validate the algorithm, we manually classified the articles with the top 100 scores from each classifier. RESULTS: The definitions and checklist facilitated classification and resulted in good inter-rater reliability for coding publications for the training set. Very good performance was achieved for the classifiers as represented by the area under the receiver operating curves (AUC), with an AUC of 0.94 for the T0 classifier, 0.84 for T1/T2, and 0.92 for T3/T4. CONCLUSIONS: The combination of definitions agreed upon by five CTSA hubs, a checklist that facilitates more uniform definition interpretation, and algorithms that perform well in classifying publications along the translational spectrum provide a basis for establishing and applying uniform definitions of translational research categories. The classification algorithms allow publication analyses that would not be feasible with manual classification, such as assessing the distribution and trends of publications across the CTSA network and comparing the categories of publications and their citations to assess knowledge transfer across the translational research spectrum

    Transformation of Trojans into Quasi-Satellites During Planetary Migration and Their Subsequent Close-Encounters with the Host Planet

    Full text link
    We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale tau (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ~80% of Jovian quasi-satellites experience one or more close-encounters within Jupiter's Hill radius (R_H) as they are forced out of the quasi-satellite resonance. As many as ~20% come within R_H/4 and ~2.5% come within R_H/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet

    Deoxyhypusine synthase, an essential enzyme for hypusine biosynthesis, is required for proper exocrine pancreas development

    Get PDF
    Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function

    Developing a New Generation of Integrated Micro-Spec Far Infrared Spectrometers for the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM)

    Full text link
    The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the μ\rm \mu-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the 555−714 μ\rm 555 - 714\ \mum range with a resolution of $\rm R\ =\ \lambda / \Delta\lambda\ =\ 512atthe at the \rm 638\ \mumbandcenter.ThespectrometerdesignincorporatesaRowlandgratingspectrometerimplementedinaparallelplatewaveguideonalow−losssingle−crystalSichip,employingNbmicrostripplanartransmissionlinesandthin−filmAlkineticinductancedetectors(KIDs).TheEXCLAIMm band center. The spectrometer design incorporates a Rowland grating spectrometer implemented in a parallel plate waveguide on a low-loss single-crystal Si chip, employing Nb microstrip planar transmission lines and thin-film Al kinetic inductance detectors (KIDs). The EXCLAIM \rm \mu−Specdesignisanadvancementuponasuccessful-Spec design is an advancement upon a successful \rm R = 64\ \mu−Specprototype,andcanbeconsideredasub−mmsuperconductingphotonicintegratedcircuit(PIC)thatcombinesspectraldispersionanddetection.Thedesignoperatesinasingle-Spec prototype, and can be considered a sub-mm superconducting photonic integrated circuit (PIC) that combines spectral dispersion and detection. The design operates in a single M{=}2gratingorder,allowingonespectrometertocoverthefullEXCLAIMbandwithoutrequiringamulti−orderfocalplane.TheEXCLAIMinstrumentwillflysixspectrometers,whicharefabricatedonasingle150mmdiameterSiwafer.Fabricationinvolvesaflip−wafer−bondingprocesswithpatterningofthesuperconductinglayersonbothsidesoftheSidielectric.Thespectrometersaredesignedtooperateat100mK,andwillinclude355AlKIDdetectorstargetingagoalofNEP grating order, allowing one spectrometer to cover the full EXCLAIM band without requiring a multi-order focal plane. The EXCLAIM instrument will fly six spectrometers, which are fabricated on a single 150 mm diameter Si wafer. Fabrication involves a flip-wafer-bonding process with patterning of the superconducting layers on both sides of the Si dielectric. The spectrometers are designed to operate at 100 mK, and will include 355 Al KID detectors targeting a goal of NEP {\sim}8\times10^{-19} \rm W/\sqrt{Hz}.Wesummarizethedesign,fabrication,andongoingdevelopmentofthese. We summarize the design, fabrication, and ongoing development of these \rm \mu$-Spec spectrometers for EXCLAIM.Comment: 9 pages, 5 figures, to appear in the Proceedings of the SPIE Astronomical Telescopes + Instrumentation (2022

    Women's empowerment, production choices, and crop diversity in Burkina Faso, India, Malawi, and Tanzania: a secondary analysis of cross-sectional data

    Get PDF
    BACKGROUND: Bolstering farm-level crop diversity is one strategy to strengthen food system resilience and achieve global food security. Women who live in rural areas play an essential role in food production; therefore, we aimed to assess the associations between women's empowerment and crop diversity. METHODS: In this secondary analysis of cross-sectional data, we used data from four cluster-randomised controlled trials done in Burkina Faso, India, Malawi, and Tanzania. We assessed women's empowerment using indicators from the Women's Empowerment in Agriculture Index. Farm-level crop diversity measures were the number of food crops grown, number of food groups grown, and if nutrient-dense crops were grown. We used a two-stage modelling approach. First, we analysed covariate-adjusted country-specific associations between women's empowerment and crop diversity indicators using multivariable generalised linear models. Second, we pooled country-specific associations using random-effects models. FINDINGS: The final analytic sample included 1735 women from Burkina Faso, 4450 women from India, 547 women from Malawi, and 574 women from Tanzania. Across all countries, compared with households in which women provided input into fewer productive decisions, households of women with greater input into productive decisions produced more food crops (mean difference 0·36 [95% CI 0·16-0·55]), a higher number of food groups (mean difference 0·16 [0·06-0·25]), and more nutrient-dense crops (percentage point difference 3 [95% CI 3-4]). Across all countries, each additional community group a woman actively participated in was associated with cultivating a higher number of food crops (mean difference 0·20 [0·04-0·35]) and a higher number of food groups (mean difference 0·11 [0·03-0·18]), but not more nutrient-dense crops. In pooled associations from Burkina Faso and India, asset ownership was associated with cultivating a higher number of food crops (mean difference 0·08 [0·04-0·12]) and a higher number of food groups (mean difference 0·05 [0·04-0·07]), but not more nutrient-dense crops. INTERPRETATION: Greater women's empowerment was associated with higher farm-level crop diversity among low-income agricultural households, suggesting that it could help enhance efforts to strengthen food system resilience. FUNDING: Bill & Melinda Gates Foundation

    Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping

    Full text link
    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z < 3.5, following an innovative approach known as intensity mapping. Intensity mapping measures the statistics of brightness fluctuations of cumulative line emissions instead of detecting individual galaxies, thus enabling a blind, complete census of the emitting gas. To detect this emission unambiguously, EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM mission uses a cryogenic design to cool the telescope optics to approximately 1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on the sky from the linear regime up to shot noise-dominated scales. The telescope optical elements couple to six {\mu}-Spec spectrometer modules, operating over a 420-540 GHz frequency band with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. A Radio Frequency System-on-Chip (RFSoC) reads out the detectors in the baseline design. The cryogenic telescope and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral windows of low emission in the upper atmosphere. Here, an overview of the mission design and development status since the start of the EXCLAIM project in early 2019 is presented.Comment: SPIE Astronomical Telescopes + Instrumentation. arXiv admin note: substantial text overlap with arXiv:1912.0711

    Divided and Disconnected — An Examination of Youths’ Experiences with Emotional Distress within the Context of their Everyday Lives

    Get PDF
    This paper is based on a qualitative study conducted in a rural community in British Columbia, Canada. Ethnographic methods were used to: (1) to bring youth voice to the literature on emotional distress; and (2) to capture the ways in which context shapes young peoples’ experiences of emotional distress within their everyday lives. Our findings demonstrate how socio-structural contextual factors such as the local economy, geographical segregation, racism, ageism, and cutbacks in health and social service programming operate to create various forms of disconnection, and intersect in young peoples’ lives to shape their experiences of emotional distress

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission
    • …
    corecore