16 research outputs found

    Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna

    No full text
    Evolutionary radiations are fascinating phenomena corresponding to a dramatic diversification of taxa and a burst of cladogenesis over short periods of time. Most evolutionary radiations have long been regarded as adaptive but this has seldom been demonstrated with large-scale comparative datasets including fossil data. Originating in the Early Jurassic, irregular echinoids are emblematic of the spectacular diversification of mobile marine faunas during the Mesozoic Marine Revolution. They diversified as they colonized various habitats, and now constitute the main component of echinoid fauna in modern seas. The evolutionary radiation of irregular echinoids has long been considered as adaptive but this hypothesis has never been tested. In the present work we analyze the evolution of echinoid species richness and morphological disparity over 37 million years based on an extensive fossil dataset. Our results demonstrate that morphological and functional diversifications in certain clades of irregular echinoids were exceptionally high compared to other clades and that they were associated with the evolution of new modes of life and so can be defined as adaptive radiations. The role played by ecological opportunities in the diversification of these clades was critical, with the evolution of the infaunal mode of life promoting the adaptive radiation of irregular echinoids

    The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea).

    No full text
    16 pagesInternational audienceCryptic species have been repeatedly described for two decades among the Antarctic fauna, challenging the classic model of Antarctic species with circumpolar distributions and leading to revisit the richness of the Antarctic fauna. No cryptic species had been so far recorded among Antarctic echinoids, which are, however, relatively well diversified in the Southern Ocean. The R/V Polarstern cruise PS81 (ANT XXIX/3) came across populations of Abatus bidens, a schizasterid so far known by few specimens that were found living in sympatry with the species Abatus cavernosus. The species A. cavernosus is reported to have a circum-Antarctic distribution, while A. bidens is only recorded with certainty in South Georgia and at the northern tip of the Antarctic Peninsula. Based on genetic and morphological analyses, our results clearly show that A. bidens and A. cavernosus are two distinct species. The analyzed specimens of A. bidens group together in two haplogroups separated from one another by 2.7 % of nucleotide differences. They are located in the Weddell Sea and in the Bransfield Strait. Specimens of A. cavernosus form one single haplogroup separated from haplogroups of A. bidens by 5 and 3.5 % of nucleotide differences, respectively. The species was collected in the Drake Passage and in the Bransfield Strait. Morphological analyses differentiate A. bidens from A. cavernosus. In contrast, the two genetic groups of A. bidens cannot be differentiated from one another based on morphology alone, suggesting that they may represent a case of cryptic species, common in many Antarctic taxa, but not yet reported in Antarctic echinoids. This needs to be confirmed by complementary analyses of independent genetic markers

    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).

    No full text
    27 pagesInternational audienceBolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of which have been controversial over almost two centuries. For the first time, a wide range of techniques (CT-scan, SEM, cathodoluminescence, XPL, UV epifluorescence, EBSD, FT-IR and XRF spectrometry) were applied to wellpreservedspecimens of Bolboporites from Norway and Russia. Our main finding confirms its echinoderm affinities, as shown by its stereomic microstructure and by the first definitive evidence of its monocrystalline nature. Each cone consists in a single, microporous calcitic crystal with a narrow longitudinal internal canal. These results are combined with all previous data on Bolboporites to critically discuss five alternative interpretations ofthis fossil, namely theca, basal cone, spine, columnal, and holdfast, respectively. The most parsimonious scenario considers Bolboporites as an isolated spine, which was articulated in life by a short biserial appendage to the body wall of an unknown echinoderm, possibly of echinozoan affinities

    Identifying past remains of morphologically similar vole species using molar shapes.

    No full text
    18 pagesInternational audienceAccurate species identification in fossil remains is a complex task but is a key component for developing good inferences on many, if not all, fundamental questions in macroecology and macroevolution. In the Quaternary, arvicolines are very abundant remains in archeological and paleontological sites in Western Europe and their identification is often based on the first lower molar. The common vole Microtus arvalis (Pallas, 1778) and the field vole Microtus agrestis (Linnaeus, 1761) are commonly found in those deposits. These two species are genetically and ecologically divergent. Nonetheless, their lower molars, on which species identification is done, exhibit a large morphological variation that can potentially lead to some confusion and misinterpretation. Moreover, molecular data suggest that present-day M. agrestis populations are a complex of divergent lineages, some of them being recognized nowadays as valid species. On the basis of extant populations representing a large part of the present-day geographical distribution of these two species, we developed a classification model based on geometric morphometrics of the first lower molar. Our statistical model was then applied on four fossil sites selected to evaluate the relevance of taxonomic determination found in species lists. The model using landmarks describing the overall shape of the first lower molar classifies the two species with the smallest prediction error together with very high individual posterior probabilities. The obtained classification is much better than those arising from shapes of any specific molar part such as the anterior loop, asymmetry or peculiar triangle shape. Discrepancies with expert classification on fossils suggest that existing faunal lists should always be considered cautiously for these two species. Our morphometric model provides a first step towards a rationalized way of revising past collections and expertise for future small mammal assemblages. It will thus help us better understand the paleobiogeographical expansion of these two key species in Quaternary faunas

    Influence of leaf age on induced resistance in grapevine against Plasmopara viticola

    No full text
    International audienceSulfated laminarin (PS3) has previously been shown to induce resistance of grapevine leaves against the oomycete Plasmopara viticola, the causal agent of grape downy mildew. Here, we observed that the level of PS3-induced resistance (PS3-IR) was higher in the adult leaf (in position P3) than in the younger, not fully expanded leaf (in position P1, located above P3). By investigating grapevine defense reactions upon PS3 treatment and inoculation, we found that the production of H2O2, of phytoalexins, and the deposition of phenolics were more abundant in P3 than in P1 leaves. In addition, PS3 significantly reduced stomatal colonization by zoospores only in P3 leaves. Thus, the capacity of an adult leaf to express a higher level of defense reactions during PS3-IR may partly explain why it exhibits a more elevated resistance when compared to a young leaf, still in growth. These findings have likely practical consequences in induced resistance applicatio

    Does leaf position influence induced resistance to grape downy mildew?

    No full text
    National audienceWe observed that protection against grape downy mildew achieved by resistance inducers was higher in the adult leaf than in the younger, not fully expanded leaf. Using sulfated laminarin as inducer, this difference of efficacy could be correlated to stronger defense reactions (i. e. H2O2, defense gene expression) in adult leaf as compared to the younger one. These findings should be taken into account in disease control strategies involving induced resistance

    Biplot of species richness and disparity.

    No full text
    <p>Species richness (expressed in number of species) is plotted against disparity (expressed as the Mean Pairwise Distance) for each clade and each time interval. The four clades of irregular echinoids are plotted separately from the others (respectively A and B).</p

    Richness and disparity levels of main Jurassic echinoid clades in relation with their feeding strategies and modes of life.

    No full text
    <p>The spindle diagram shows taxonomic diversity and disparity levels for the 12 Jurassic echinoid clades. For each clade, taxonomic diversity is expressed as species richness for each geological stage, the wider the rectangles, the higher the number of species. Colors correspond to the tested disparity values relative to other clades: unusually high (red), normal (orange), unusually low (yellow), not tested due to lack of data (white). Main feeding strategies and modes of life were interpreted for each clade. Ages in million of years Before Present (after Gradstein et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0194575#pone.0194575.ref073" target="_blank">73</a>]).</p
    corecore