84 research outputs found

    Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat

    Get PDF
    International audienceThis study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1-receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects

    Implications of Polycomb and Trithorax complexes in the early development of Ciona intestinalis

    No full text
    Implications des complexes Polycomb et Trithorax au cours du développement précoce chez Ciona intestinalisLes protéines des groupes Polycomb (PcG) et Trithorax (TrxG) ont été initialement découvertes chez Drosophila melanogaster. Ces deux groupes sont classiquement connus pour leurs rôles respectifs de répresseurs et d'activateurs épigénétiques qui contrôlent et maintiennent les états chromatiniens au cours du temps. Ces facteurs régulent de nombreux gènes cibles dont les gènes homéotiques. Au cours de ma thèse, j'ai étudié trois composants de ces deux groupes : Enhancer of zeste (E(z)), appartenant au complexe PRC2 du PcG et responsable du dépôt de la marque de répression génique H3K27me3, Polyhomeotic (Ph), appartenant au complexe PRC1 du PcG et dont le rôle exact reste à déterminer, et Trithorax (Trx), appartenant au complexe TAC1 du TrxG et responsable du dépôt de la marque d'activation génique H3K4me3. Jusqu'à présent, aucune étude n'a abordé la régulation épigénétique via les PcG et TrxG chez l'ascidie solitaire Ciona intestinalis. Cette espèce présente un cluster des gènes Hox désorganisé et ne possède pas la protéine Polycomb (Pc) du PRC1, responsable de la reconnaissance de la marque de répression H3K27me3 déposée par la protéine E(z).Nos travaux montrent que la protéine E(z) est fonctionnelle et conserve son activité méthyltransférase sur le résidu H3K27 chez Ciona intestinalis. Nous avons ensuite observé, par des expériences de knockdown par micro-injection de morpholinos, que les inhibitions protéiques d'E(z), Ph et Trx ont des conséquences dramatiques sur la différenciation et la mise en place des différents tissus au cours du développement larvaire, notamment sur la mise en place de la notochorde puisque celle-ci est totalement absente chez les morphants E(z) et Ph. Les défauts de phénotype du morphant E(z) sont corrélés à la perte du dépôt d'H3K27me3 et nous avons mis en évidence, lors de l'inhibition d'E(z), une dérépression des gènes tissu-spécifiques impliqués dans le développement embryonnaire précoce alors que les gènes tardivement exprimés sont réprimés. De plus, l'expression des gènes Hox n'est pas significativement modifiée au cours du développement embryonnaire lorsque la protéine E(z) est inhibée, à l'exception du gène Hox12 qui est déréprimé, comme attendu.L'ensemble de ces résultats permet d'émettre l'idée innovante selon laquelle les protéines des PcG et TrxG jouent un rôle déterminant dans la régulation de l'expression génique lors de l'embryogénèse de Ciona intestinalis tout en ayant une implication mineure dans la régulation de l'expression des gènes Hox à ce stade du développement.Implications of Polycomb and Trithorax complexes in the early development of Ciona intestinalisPolycomb and Trithorax group (PcG and TrxG) proteins were discovered originally in Drosophila melanogaster. Both groups are classically known for their roles in the maintenance of silenced and active chromatin states over time, respectively. These factors regulate many target genes including the homeotic genes. During my PhD, I studied three components of these two groups: Enhancer of zest (E(z)), belonging to the PRC2 complex of PcG and responsible for H3K27me3 mark deposit for gene repression, Polyhomeotic (Ph), belonging to the PRC1 complex of PcG whose role remains to be determined, and Trithorax (Trx), belonging to the TAC1 complex of TrxG and responsible for H3K4me3 mark deposit for gene activation. Until now, no study addresses the epigenetic regulation mediated by PcG and TrxG in the solitary ascidian Ciona intestinalis. This specie has a disorganized Hox cluster and in which the Polycomb (Pc) protein of PRC1, responsible for the recognition of the repressive H3K27me3 mark, is absent.Our work shows that the E(z) protein is functional and retains its methyltransferase activity on H3K27 residue in Ciona intestinalis. Then, we demonstrated, by knockdown experiments with morpholino microinjection, that the inhibition of E(z), Ph and Trx has dramatic consequences on differentiation and on the establishment of different tissues during larval development, particularly on the notochord establishment since it is totally absent in E(z) and Ph morphants. E(z) morphant phenotypic defects are correlated with lack of H3K27me3 mark deposit and we highlighted that, during the E(z) inhibition, tissue-specific genes implied in early development are de-repressed while late-expressed genes are down-regulated. In addition among Hox genes, only Hox12 expression is significantly modified and found to be de-repressed in E(z) morphant context, as expected.Altogether, our results present the innovative idea that the PcG and TrxG proteins play a major role in the gene expression regulation during embryogenesis of Ciona intestinalis while having a minor involvement in the regulation of Hox genes expression at this stage of development

    Implications des complexes Polycomb et Trithorax au cours du développement précoce chez Ciona intestinalis

    No full text
    Implications des complexes Polycomb et Trithorax au cours du développement précoce chez Ciona intestinalisLes protéines des groupes Polycomb (PcG) et Trithorax (TrxG) ont été initialement découvertes chez Drosophila melanogaster. Ces deux groupes sont classiquement connus pour leurs rôles respectifs de répresseurs et d'activateurs épigénétiques qui contrôlent et maintiennent les états chromatiniens au cours du temps. Ces facteurs régulent de nombreux gènes cibles dont les gènes homéotiques. Au cours de ma thèse, j'ai étudié trois composants de ces deux groupes : Enhancer of zeste (E(z)), appartenant au complexe PRC2 du PcG et responsable du dépôt de la marque de répression génique H3K27me3, Polyhomeotic (Ph), appartenant au complexe PRC1 du PcG et dont le rôle exact reste à déterminer, et Trithorax (Trx), appartenant au complexe TAC1 du TrxG et responsable du dépôt de la marque d'activation génique H3K4me3. Jusqu'à présent, aucune étude n'a abordé la régulation épigénétique via les PcG et TrxG chez l'ascidie solitaire Ciona intestinalis. Cette espèce présente un cluster des gènes Hox désorganisé et ne possède pas la protéine Polycomb (Pc) du PRC1, responsable de la reconnaissance de la marque de répression H3K27me3 déposée par la protéine E(z).Nos travaux montrent que la protéine E(z) est fonctionnelle et conserve son activité méthyltransférase sur le résidu H3K27 chez Ciona intestinalis. Nous avons ensuite observé, par des expériences de knockdown par micro-injection de morpholinos, que les inhibitions protéiques d'E(z), Ph et Trx ont des conséquences dramatiques sur la différenciation et la mise en place des différents tissus au cours du développement larvaire, notamment sur la mise en place de la notochorde puisque celle-ci est totalement absente chez les morphants E(z) et Ph. Les défauts de phénotype du morphant E(z) sont corrélés à la perte du dépôt d'H3K27me3 et nous avons mis en évidence, lors de l'inhibition d'E(z), une dérépression des gènes tissu-spécifiques impliqués dans le développement embryonnaire précoce alors que les gènes tardivement exprimés sont réprimés. De plus, l'expression des gènes Hox n'est pas significativement modifiée au cours du développement embryonnaire lorsque la protéine E(z) est inhibée, à l'exception du gène Hox12 qui est déréprimé, comme attendu.L'ensemble de ces résultats permet d'émettre l'idée innovante selon laquelle les protéines des PcG et TrxG jouent un rôle déterminant dans la régulation de l'expression génique lors de l'embryogénèse de Ciona intestinalis tout en ayant une implication mineure dans la régulation de l'expression des gènes Hox à ce stade du développement.Implications of Polycomb and Trithorax complexes in the early development of Ciona intestinalisPolycomb and Trithorax group (PcG and TrxG) proteins were discovered originally in Drosophila melanogaster. Both groups are classically known for their roles in the maintenance of silenced and active chromatin states over time, respectively. These factors regulate many target genes including the homeotic genes. During my PhD, I studied three components of these two groups: Enhancer of zest (E(z)), belonging to the PRC2 complex of PcG and responsible for H3K27me3 mark deposit for gene repression, Polyhomeotic (Ph), belonging to the PRC1 complex of PcG whose role remains to be determined, and Trithorax (Trx), belonging to the TAC1 complex of TrxG and responsible for H3K4me3 mark deposit for gene activation. Until now, no study addresses the epigenetic regulation mediated by PcG and TrxG in the solitary ascidian Ciona intestinalis. This specie has a disorganized Hox cluster and in which the Polycomb (Pc) protein of PRC1, responsible for the recognition of the repressive H3K27me3 mark, is absent.Our work shows that the E(z) protein is functional and retains its methyltransferase activity on H3K27 residue in Ciona intestinalis. Then, we demonstrated, by knockdown experiments with morpholino microinjection, that the inhibition of E(z), Ph and Trx has dramatic consequences on differentiation and on the establishment of different tissues during larval development, particularly on the notochord establishment since it is totally absent in E(z) and Ph morphants. E(z) morphant phenotypic defects are correlated with lack of H3K27me3 mark deposit and we highlighted that, during the E(z) inhibition, tissue-specific genes implied in early development are de-repressed while late-expressed genes are down-regulated. In addition among Hox genes, only Hox12 expression is significantly modified and found to be de-repressed in E(z) morphant context, as expected.Altogether, our results present the innovative idea that the PcG and TrxG proteins play a major role in the gene expression regulation during embryogenesis of Ciona intestinalis while having a minor involvement in the regulation of Hox genes expression at this stage of development.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Spermatogenesis in the carnivorous sponge Lycopodina hypogea (Porifera, Demospongiae)

    No full text
    International audienceCarnivorous sponges (family Cladorhizidae) lack the aquiferous system and choanocytes and, therefore, their reproduction and in particular spermatogenesis is unusual for Porifera. We studied spermatogenesis in a carnivorous sponge Lycopodina hypogea using confocal microscopy, SEM and TEM. In brief, spermatogenesis in L. hypogea proceeds as follows. Male cells derive from archaeocyte-like cells. During its first divisions, the spermatogonia are surrounded by a thin follicle made up by a single cell. The spermatogonia divide mitotically, giving rise to next generation of spermatogonia, primary spermatocytes and secondary spermatocytes. Spermatozoa of L. hypogea are long and narrow mono-flagellated cells, tightly packed inside the spermatic cyst. They are unusual for sponges, being dart-shaped, with an anterior filament, which is an electron-dense, rod-like outgrowth terminating in an acrosome. The flagellum is long, and its proximal region is located within a cytoplasmic tunnel. In the course of spermiogenesis, a secondary envelope made up by several cells tightly intertwined by their pseudo-podia is formed around the first unicellular envelope. Symbiotic bacteria are usually present between the sperm cells. During maturation, the sperm cyst, which may be called the spermatophore, migrates from the sponge body to the filaments and acquires two bundles of forceps spicules. Mature spermatophores are released from the filaments. To sum up, we showed that spermatogenesis and fertilization in L. hypogea are strikingly different from these processes in other sponges. The differences mostly concern the origin of male germ cells, the structure of mature spermatozoa and the formation of spermatophores

    Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency

    No full text
    International audienceMutations in the a disintegrin and metalloproteinase with thrombospondin motif-like 2 ( ADAMTSL2) gene are responsible for the autosomal recessive form of geleophysic dysplasia, which is characterized by short stature, short extremities, and skeletal abnormalities. However, the exact function of ADAMTSL2 is unknown. To elucidate the role of this protein in skeletal development, we generated complementary knockout (KO) mouse models with either total or chondrocyte Adamtsl2 deficiency. We observed that the Adamtsl2 KO mice displayed skeletal abnormalities reminiscent of the human phenotype. Adamtsl2 deletion affected the growth plate formation with abnormal differentiation and proliferation of chondrocytes. In addition, a TGF-β signaling impairment in limbs lacking Adamtsl2 was demonstrated. Further investigations revealed that Adamtsl2 KO chondrocytes failed to establish a microfibrillar network composed by fibrillin1 and latent TGF-β binding protein 1 fibrils. Chondrocyte Adamtsl2 KO mice also exhibited dwarfism. These studies uncover the function of Adamtsl2 in the maintenance of the growth plate ECM by modulating the microfibrillar network.-Delhon, L., Mahaut, C., Goudin, N., Gaudas, E., Piquand, K., Le Goff, W., Cormier-Daire, V., Le Goff, C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency

    Comparison of methods for DMSP measurements in dinoflagellate cultures

    No full text
    International audienceA comparison of three analytical methods (the indirect GC‐FPD and MIMS, and direct LC‐MS/MS) for dimethylsulfoniopropionate (DMSP) measurements was conducted to assess their accuracy and reliability. The three methods showed a linear response but are distinguished by their linearity range, the largest being for MIMS. All three methods showed good precision on Alexandrium minutum samples (2–12%). The variability between the three methods when comparing analyses of A. minutum replicates was 11%, with the DMSP measurements by LC‐MS/MS being the highest. This result also confirms that indirect DMSP measurement after hydrolysis for GC or MIMS methods does not lead to an overestimation of DMSP values in A. minutum . A special focus was made on the more recent LC‐MS/MS method including further assays in sample preparation and storage from cultures of the dinoflagellate A. minutum . Dinoflagellate cells should be harvested by gentle filtration (< 5 cm Hg) or slow centrifugation (500 × g ) to retrieve the largest DMSP pool. For the LC‐MS/MS method, MeOH used for cell extraction should be added prior to freezing (to prevent DMSP degradation). Samples will then be stable in frozen storage for at least 2 months. Finally, direct and indirect methods are complementary for identifying the exact DMSP fraction among dimethylsulfide‐producing compounds that compose total and particulate DMSP pools issued from newly screened organisms or environmental samples

    Using the Carnivorous Sponge <i>Lycopodina hypogea</i> as a Nonclassical Model for Understanding Apoptosis-Mediated Shape Homeostasis at the Organism Level

    No full text
    The dynamic equilibrium between death and regeneration is well established at the cell level. Conversely, no study has investigated the homeostatic control of shape at the whole organism level through processes involving apoptosis. To address this fundamental biological question, we took advantage of the morphological and functional properties of the carnivorous sponge Lycopodina hypogea. During its feeding cycle, this sponge undergoes spectacular shape changes. Starved animals display many elongated filaments to capture prey. After capture, prey are digested in the absence of any centralized digestive structure. Strikingly, the elongated filaments actively regress and reform to maintain a constant, homeostatically controlled number and size of filaments in resting sponges. This unusual mode of nutrition provides a unique opportunity to better understand the processes involved in cell renewal and regeneration in adult tissues. Throughout these processes, cell proliferation and apoptosis are interconnected key actors. Therefore, L. hypogea is an ideal organism to study how molecular and cellular processes are mechanistically coupled to ensure global shape homeostasis

    Sponge digestive system diversity and evolution: filter feeding to carnivory

    No full text
    International audienceSponges are an ancient basal life form, so understanding their evolution is key to understanding all metazoan evolution. Sponges have very unusual feeding mechanisms, with an intricate network of progressively optimized filtration units: from the simple choanocyte lining of a central cavity, or spongocoel, to more complex chambers and canals. Furthermore, in a single evolutionary event, a group of sponges transitioned to carnivory. This major evolutionary transition involved replacing the filter-feeding apparatus with mobile phagocytic cells that migrate collectively towards the trapped prey. Here, we focus on the diversity and evolution of sponge nutrition systems and the amazing adaptation to carnivory
    corecore