49 research outputs found

    Cardiorespiratory and Metabolic Responses to Sinusoidal Exercise of Moderate Intensity: Reliability of the Measurements and the Effects of Fatigue

    Get PDF
    The cardiorespiratory and metabolic responses to sinusoidal exercise, in which work rate follows an oscillating pattern, have been proposed to assess the effectiveness of the cardiorespiratory adjustments. The repetition of successive sinusoidal periods permits to simultaneously reduce the influence of random fluctuations and accentuate the underlying physiological response. Data analysis has been often performed by overlapping and averaging successive cycles assuming no differences among them, thus excluding the possible presence of fatigue throughout successive cycles. After assessing the reliability of the measurements during sinusoidal exercise, this study sought to investigate the possible differences among subsequent cycles of sinusoidal work. Eleven active volunteers (age: 28±6 yrs., body mass: 73±7 kg; stature: 1.79±0.06 m, maximum oxygen uptake (VO2max): 52 ml·kg−1·min−1) participated to the study that was conducted in accordance with the Basic Principles of the Declaration of Helsinki. After determining individual VO2max and critical power (CP) on a cycle ergometer, they underwent sinusoidal work rates characterized by an amplitude (A), a midpoint (MP) and a period equal to ±50W, 50W below CP and 240s, respectively, up to exhaustion. On a different day, participants repeated the same experimental session for reliability purposes. Expiratory ventilation (VE), oxygen uptake (VO2), carbon dioxide output (VCO2), and heart rate (fH) responses were fitted by the sinewave function that minimized the residuals. A, MP and the time-delay (tD, the latency between mechanical work rate and physiological responses) of all parameters were determined for each cycle. Reliability assessment between day 1 and 2 was expressed as Cronbach’s a and intraclass correlation coefficient (ICC). A one-way ANOVA for repeated measures tested the presence of differences among cycles. Regression analysis was also applied to explore possible relationship between each variables and time. Reliability analysis revealed a very high to high ICC values for most of the parameters, with the exception of A for VO2 and VCO2 and tD for fH (moderate reliability). A of VE and fH response increased and decreased with time, respectively (p<0.05). MP of VE and fH showed a positive regression that led to significantly higher values in the last compared to the first cycle; on the contrary, no changes were observed among cycles in all other MP data. tD was similar in each cycle for all the investigated parameters despite a very slight negative regression found for VCO2. In conclusion, most of the physiological responses to moderate sinusoidal exercise exhibited a high to very high reliability. Some of the cardiorespiratory parameters showed significant changes with time throughout the sinusoidal exercise possibly due to the onset of fatigue. Therefore, an approach that overlaps and averages all the cycles together should not be performed to avoid wrong estimation of physiological responses to sinusoidal exercise, unless the averaging approach involves only the first cycles

    Possible predictors of involuntary weight loss in patients with Alzheimer's disease

    Get PDF
    Loss in body mass (∆BM) is a common feature in patients with Alzheimer's disease (AD). However, the etiology of this phenomenon is unclear. The aim of this cohort study was to observe possible ∆BM in AD patients following a standard institutionalized diet. Secondary objective was to identify possible predictors of ∆BM. To this end, 85 AD patients (age: 76±4 yrs; stature: 165±3 cm; BM: 61.6±7.4 kg; mean±standard deviation) and 86 controls (CTRL; age: 78±5 yrs; stature: 166±4 cm; BM: 61.7±6.4 kg) were followed during one year of standard institutionalized diet (~1800 kcal/24h). BM, daily energy expenditure, albuminemia, number of medications taken, and cortisolism, were recorded PRE and POST the observation period. Potential predictors of ∆BM in women (W) and men (M) with AD were calculated with a forward stepwise regression model. After one year of standard institutionalized diet, BM decreased significantly in AD (-2.5 kg; p < 0.01), while in CTRL remained unchanged (-0.4 kg; p = 0.8). AD patients and CTRL exhibited similar levels of daily energy expenditure (~1625 kcal/24h). The combination of three factors, number of medications taken, albuminemia, and cortisolism, predicted ∆BM in W with AD. At contrary, the best predictor of ∆BM in M with AD was the cortisolism. Despite a controlled energy intake and similar energy expenditure, both W and M with AD suffered of ∆BM. Therefore, controlled diet did not prevent this phenomenon. The assessments of these variables may predict W and M with AD at risk of weight loss

    Reliability of the Electromechanical Delay Components Assessment during the Relaxation Phase

    Get PDF
    The study aimed to assess by an electromyographic (EMG), mechanomyographic (MMG), and force-combined approach the electrochemical and mechanical components of the overall electromechanical delay during relaxation (R-EMD). Reliability of the measurements was also assessed. To this purpose, supramaximal tetanic stimulations (50 Hz) were delivered to the gastrocnemius medialis muscle of 17 participants. During stimulations, the EMG, MMG, and force signals were detected, and the time lag between EMG cessation and the beginning of force decay (Δt EMG-F, as temporal indicators of the electrochemical events) and from the initial force decrease to the largest negative peak of MMG signal during relaxation (Δt F-MMG, as temporal indicators of the mechanical events) was calculated, together with overall R-EMD duration (from EMG cessation to the largest MMG negative peak during relaxation). Peak force (pF), half relaxation time (HRT), and MMG peak-to-peak during the relaxation phase (R-MMG p-p) were also calculated. Test-retest reliability was assessed by Intraclass Correlation Coefficient (ICC). With a total R-EMD duration of 96.9 ± 1.9 ms, Δt EMG-F contributed for about 24% (23.4 ± 2.7 ms) while Δt F-MMG for about 76% (73.5 ± 3.2 ms). Reliability of the measurements was high for all variables. Our findings show that the main contributor to R-EMD is represented by the mechanical components (series elastic components and muscle fibres behaviour), with a high reliability level for this type of approach

    Bilateral Biceps Curl Shows Distinct Biceps Brachii and Anterior Deltoid Excitation Comparing Straight vs. EZ Barbell Coupled with Arms Flexion/No-Flexion

    No full text
    The present study investigated the excitation of the biceps brachii and anterior deltoid during bilateral biceps curl performed using the straight vs. EZ barbell and with or without flexing the arms. Ten competitive bodybuilders performed bilateral biceps curl in non-exhaustive 6-rep sets using 8-RM in four variations: using the straight barbell flexing (STflex) or not flexing the arms (STno-flex) or the EZ barbell flexing (EZflex) or not flexing the arms (EZno-flex). The ascending and descending phases were separately analyzed using the normalized root mean square (nRMS) collected using surface electro-myography. For the biceps brachii, during the ascending phase, a greater nRMS was observed in STno-flex vs. EZno-flex (+1.8%, effect size [ES]: 0.74), in STflex vs. STno-flex (+17.7%, ES: 3.93) and in EZflex vs. EZno-flex (+20.3%, ES: 5.87). During the descending phase, a greater nRMS was observed in STflex vs. EZflex (+3.8%, ES: 1.15), in STno-flex vs. STflex (+2.8%, ES: 0.86) and in EZno-flex vs. EZflex (+8.1%, ES: 1.81). The anterior deltoid showed distinct excitation based on the arm flexion/no-flexion. A slight advantage in biceps brachii excitation appears when using the straight vs. EZ barbell. Flexing or not flexing the arms seems to uniquely excite the biceps brachii and anterior deltoid. Practitioners should consider including different bilateral biceps barbell curls in their routine to vary the neural and mechanical stimuli

    The Activation of Gluteal, Thigh, and Lower Back Muscles in Different Squat Variations Performed by Competitive Bodybuilders: Implications for Resistance Training

    No full text
    The present study investigated the activation of gluteal, thigh, and lower back muscles in different squat variations. Ten male competitive bodybuilders perform back-squat at full (full-BS) or parallel (parallel-BS) depth, using large feet-stance (sumo-BS), and enhancing the feet external rotation (external-rotated-sumo-BS) and front-squat (FS) at 80% 1-RM. The normalized surface electromyographic root-mean-square (sEMG RMS) amplitude of gluteus maximus, gluteus medius, rectus femoris, vastus lateralis, vastus medialis, adductor longus, longissimus, and iliocostalis was recorded during both the ascending and descending phase of each exercise. During the descending phase, greater sEMG RMS amplitude of gluteus maximus and gluteus medius was found in FS vs. all other exercises (p &lt; 0.05). Additionally, FS elicited iliocostalis more than all other exercises. During the ascending phase, both sumo-BS and external-rotated-sumo-BS showed greater vastus lateralis and adductor longus activation compared to all other exercises (p &lt; 0.05). Moreover, rectus femoris activation was greater in FS compared to full-BS (p &lt; 0.05). No between-exercise difference was found in vastus medialis and longissimus showed no between-exercise difference. FS needs more backward stabilization during the descending phase. Larger feet-stance increases thigh muscles activity, possibly because of their longer length. These findings show how bodybuilders uniquely recruit muscles when performing different squat variations

    Bilateral deficit magnitude increases with velocity during a half-squat exercise

    No full text
    Movement velocity has been viewed as one of the bilateral deficit (BLD) determinants. This research tested the velocity effect on BLD during a half-squat exercise. The role of muscle excitation in BLD was also assessed. BLD amplitude was assessed in 12 male soccer players while performing a half-squat exercise with incremental load. During the exercise's pushing phase, the average force and velocity were measured in bilateral and unilateral conditions to provide the bilateral index (BI) at each interpolated velocity. The vastus lateralis and medialis excitation was assessed during the exercise by calculating the surface electromyography signal root mean square (sEMGRMS). The BI for sEMGRMS (sEMG BI) was calculated. The theoretical maximum force (F0) and velocity (v0) were also determined. F0 was +43 (28)% in bilateral compared with unilateral conditions (p &lt;&nbsp;0.001), whereas v0 was similar in both conditions (p =&nbsp;0.386). The BI magnitude rose with the increase in velocity from -34 (7)% at 50%v0 to -70 (17)% at 90%v0 (p 0.03-&lt;0.001), whereas no sEMG BI occurred (p: 0.07-0.991 in both muscles). The study reported velocity-dependent changes in the BLD amplitude, with the largest BLD amplitudes occurring at the highest velocities. This behaviour could provide useful information for setting specific contraction velocities to exploit/limit the BLD amplitude as a possible training stimulus
    corecore