84 research outputs found

    Rare inborn errors of immunity: new insights in molecular basis, diagnosis and treatment

    Get PDF
    Primary Immunodeficiencies (PIDs) represent a group of rare inborn errors of immunity due to defects in the development and/or function in various components of the innate and adaptive immune system. PIDs are traditionally considered rare conditions, however, recent reports suggest that they are more common than previously believed, with an estimated prevalence of 2.3 per 100,000 persons. These disorders are characterized by a wide range of clinical symptoms, including an increased rate and severity of infections, sometimes with accompanying autoimmune or auto-inflammatory diseases, allergy and malignancy. Early diagnosis of PID is useful in order to prevent significant disease-associated morbidity and mortality. In this PhD thesis, the potential effects of betamethasone treatment on neurological symptoms and quality of life of patients affected with Ataxia-Telangiectasia are evaluated. Furthermore, new insights in the clinical, functional and molecular characterization of patients affected with several forms of PIDS, paying particular attention to recent discovered gene, are provided. A better definition of the malformative spectrum, including lung and ear-nose-throat disorders in children with 22q11.2 deletion syndrome and their role as risk factor for the pathogenesis of respiratory infections, are discussed

    FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches

    Get PDF
    Since the discovery of FOXN1 deficiency, the human counterpart of the nude mouse, a growing body of evidence investigating the role of FOXN1 in thymus and skin, has been published. FOXN1 has emerged as fundamental for thymus development, function, and homeostasis, representing the master regulator of thymic epithelial and T cell development. In the skin, it also plays a pivotal role in keratinocytes and hair follicle cell differentiation, although the underlying molecular mechanisms still remain to be fully elucidated. The nude severe combined immunodeficiency phenotype is indeed characterized by the clinical hallmarks of athymia with severe T cell immunodeficiency, congenital alopecia, and nail dystrophy. In this review, we summarize recent discoveries in the field and give interesting perspective about new and promising therapeutic approaches for disorders of immune system with athymia

    Otolarylogical features in a cohort of patients affected with 22q11.2 deletion syndrome: a monocentric survey

    Get PDF
    Otorhinolaryngologic manifestations are common in 22q11.2 deletion syndrome (22q11.2DS), but poorly described. This study aimed to better define the ear-nose-throat (ENT) phenotype of 22q11.2DS patients, in the attempt to best detect subjects requiring subspecialist intervention. We enrolled 25 patients affected with 22q11.2DS. Anatomic and functional ENT findings were investigated using clinical, laboratory and instrumental data. Immunophenotype and frequency of infections were evaluated. Univariate and multivariate analyses were performed. ENT anomalies were found in 88% of patients, and in 20% congenital palate defects required surgery. Adenoids hypertrophy or palatine tonsils hypertrophy were noted in 80 and 48%. Fourty-eight percent of subjects had rhinolalia/phonia, severe in half of these. We also found nasal regurgitation or laryngeal penetration/aspiration in 20 and 16%, respectively. Instrumental exams revealed a mild conductive hypoacusia in 32% (bilateral in most cases), tympanometric anomalies in 28%, and swallowing abnormalities in 16%. Statistical univariate analysis showed a direct association between rhinolalia/phonia and episodes of laryngeal aspiration (P=0.016) and between tympanometric anomalies and increased adenoid volume (P=0.044). No association between episodes of food aspiration and palatal anomalies was found. Moreover, no statistically significant association was observed between the number of airway infections and the ENT findings. This study contributes to better define the ENT phenotype in patients with 22q11.2DS, helpful to prevent potential complications. Furthermore, the identification of a subcategory of patients may allow the early adoption of specific speech therapy programs to improve the clinical outcome of 22q11.2DS patients

    Severe combined immunodeficiency-an update

    Get PDF
    Severe combined immunodeficiencies (SCIDs) are a group of inherited disorders responsible for severe dysfunctions of the immune system. These diseases are life-threatening when the diagnosis is made too late; they are the most severe forms of primary immunodeficiency. SCID patients often die during the first two years of life if appropriate treatments to reconstitute their immune system are not undertaken. Conventionally, SCIDs are classified according either to the main pathway affected by the molecular defect or on the basis of the specific immunologic phenotype that reflects the stage where the blockage occurs during the differentiation process. However, during the last few years many new causative gene alterations have been associated with unusual clinical and immunological phenotypes. Many of these novel forms of SCID also show extra-hematopoietic alterations, leading to complex phenotypes characterized by a functional impairment of several organs, which may lead to a considerable delay in the diagnosis. Here we review the biological and clinical features of SCIDs paying particular attention to the most recently identified forms and to their unusual or extra-immunological clinical features

    Novel Findings into AIRE Genetics and Functioning: Clinical Implications

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly known as autoimmune polyendocrine syndrome type 1, is a paradigm of a monogenic autoimmune disease caused by mutations of a gene, named autoimmune regulator (AIRE). AIRE acts as a transcription regulator that promotes immunological central tolerance by inducing the ectopic thymic expression of many tissue-specific antigens. Although the syndrome is a monogenic disease, it is characterized by a wide variability of the clinical expression with no significant correlation between genotype and phenotype. Indeed, many aspects regarding the exact role of AIRE and APECED pathogenesis still remain unraveled. In the last decades, several studies in APECED and in its mouse experimental counterpart have revealed new insights on how immune system learns self-tolerance. Moreover, novel interesting findings have extended our understanding of AIRE's function and regulation thus improving our knowledge on the pathogenesis of APECED. In this review, we will summarize recent novelties on molecular mechanisms underlying the development of APECED and their clinical implications

    Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism

    Get PDF
    Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress

    DiGeorge-like Syndrome in a Child with a 3p12.3 Deletion Involving MIR4273 Gene Born to a Mother with Gestational Diabetes Mellitus

    Get PDF
    Chromosome 22q11.2 deletion is the most common chromosomal alteration associated with DiGeorge syndrome (DGS), even though this is not the only underlying cause of DGS. In rare patients, mutations in a single gene, TBX1, have been described resulting in a DGS phenotype. Recently, it has been reported that at least part of the TBX1 mutant phenotype is due to excessive bone morphogenetic proteins (BMP) signaling. Evidence suggests that miRNA may modulate the expression of critical T-box transcriptional regulators during midface development and Bmp-signaling. We report on a 7-year-old Caucasian male born to a mother affected with gestational diabetes (GDM) who had a 371Kb-interstitial deletion of 3p12.3 identified by array CGH, involving the ZNF717, MIR1243 and 4273 genes. The child presented with a DiGeorge anomaly (DGA) associated with unilateral renal agenesis and language delay. The immunological evaluation revealed a severe reduction and impairment of T lymphocytes. FISH analysis and TBX1 sequencing were negative. Among the miRNA-4273 predicted target genes, we found BMP3, which is involved in several steps of embryogenesisincluding kidney and lung organogenesis and in insulin gene expression. Since DGA is not commonly found in newborns of diabetic mothers, we hypothesize that the pathogenesis of DGA associated with GDM is multifactorial, involving both genetic and/or epigenetic cofactors

    Case Report: Severe Rhabdomyolysis and Multiorgan Failure After ChAdOx1 nCoV-19 Vaccination

    Get PDF
    Background: Severe skeletal muscle damage has been recently reported in patients with SARS-CoV-2 infection and as a rare vaccination complication. Case summary: On Apr 28, 2021 a 68-year-old man who was previously healthy presented with an extremely severe rhabdomyolysis that occurred nine days following the first dose of SARS-CoV-2 ChAdOx1 nCov-19 vaccination. He had no risk factors, and denied any further assumption of drugs except for fermented red rice, and berberine supplement. The clinical scenario was complicated by a multi organ failure involving bone marrow, liver, lung, and kidney. For the rapid increase of the inflammatory markers, a cytokine storm was suspected and multi-target biologic immunosuppressive therapy was started, consisting of steroids, anakinra, and eculizumab, which was initially successful resulting in close to normal values of creatine phosphokinase after 17 days of treatment. Unfortunately, 48 days after the vaccination an accelerated phase of deterioration, characterized by severe multi-lineage cytopenia, untreatable hypotensive shock, hypoglycemia, and dramatic increase of procalcitonin (PCT), led to patient death. Conclusion: Physicians should be aware that severe and fatal rhabdomyolysis may occur after SARS-CoV2 vaccine administration

    Unbalanced Immune System: Immunodeficiencies and Autoimmunity

    Get PDF
    Increased risk of developing autoimmune manifestations has been identified in different primary immunodeficiencies (PIDs). In such conditions, autoimmunity and immune deficiency represent intertwined phenomena that reflect inadequate immune function. Autoimmunity in PIDs may be caused by different mechanisms, including defects of tolerance to self-antigens and persistent stimulation as a result of the inability to eradicate antigens. This general immune dysregulation leads to compensatory and exaggerated chronic inflammatory responses that lead to tissue damage and autoimmunity. Each PID may be characterized by distinct, peculiar autoimmune manifestations. Moreover, different pathogenetic mechanisms may underlie autoimmunity in PID. In this review, the main autoimmune manifestations observed in different PID, including humoral immunodeficiencies, combined immunodeficiencies, and syndromes with immunodeficiencies, are summarized. When possible, the pathogenetic mechanism underlying autoimmunity in a specific PID has been explained

    Epigenetic Alterations in Inborn Errors of Immunity

    Get PDF
    The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity
    • …
    corecore