15 research outputs found

    Safety and in vivo immune assessment of escalating doses of oral laquinimod in patients with RRMS

    Get PDF
    Background Laquinimod is an oral immunomodulator in clinical development to treat relapsing-remitting multiple sclerosis (RRMS). Laquinimod is in clinical development for the treatment of multiple sclerosis and Huntington Disease (HD). The objective of this study is to assess the safety, tolerability, pharmacokinetics (PK) and cytoimmunologic effects following escalating doses of laquinimod in patients with RRMS. Methods One hundred twelve patients were randomly assigned to laquinimod/placebo in a series of separate dose- escalating cohorts starting from a daily oral dose of 0.9 mg/1.2 mg escalating to 2.7 mg, in 0.3 mg increments. Results Twenty-eight patients received placebo and 84 received laquinimod ranging from 0.9 to 2.7 mg. No deaths occurred. One serious adverse event (SAE) of perichondritis was reported, which was unrelated to laquinimod (0.9 mg). There was no increased incidence of adverse events (AEs) with escalating doses. Laquinimod-treated patients showed more abnormal laboratory levels in liver enzymes, P-amylase, C-reactive protein (CRP), and fibrinogen, but most shifts were clinically non- significant. The exposure of laquinimod was dose proportional and linear in the tested dose range. An immunological substudy showed significant dose- dependent decreases in 6-sulpho LacNAc + dendritic cell (slanDC) frequency following laquinimod compared to placebo. Conclusion Laquinimod doses up to 2.7 mg were safely administered to patients with RRMS. An in vivo effect of laquinimod on the innate immune system was demonstrated. Trial registration EudraCT Number: 2009-011234-99. Registered 23 June 2009

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    PENERIMAAN KONSUMEN TERHADAP KERNAS NATUNA

    No full text
    Kernas merupakan makanan khas natuna yang terbuat dari daging ikan tongkol (Thunnus tonggol) dan sagu butir dengan bahan tambahan seperti tepung maizena dan bumbu pelengkap lainnya. Penelitian ini mengenai tentang penerimaan konsumen terhadap kernas natuna, yang bertujuan untuk mengetahui tingkat penerimaan atau kesukaan konsumen terhadap kernas. Tahapan penelitian ini meliputi persiapan bahan baku dan bumbu, pengolahan dan uji organoleptik. Dari hasil penelitian uji tingkat kesukaan terhadap kernas dengan bahan tambahan tepung maizena tidak memiliki pengaruh yang nyata terhadap beberapa parameter uji organoleptik. Perlakuan terbaik berdasarkan hasil uji tengkat kesukaan terdapat pada perlakuan K2 ( maizena 2%) dengan nilai rata-rata kenampakan 131.75, aroma 127.78, rasa 127.45 dan tekstur 123.38. Penutup hasil uji organoleptik berdasarkan tingkat kesukaan dari 80 panelis tidak terlatih

    Safety and in vivo immune assessment of escalating doses of oral laquinimod in patients with RRMS

    Get PDF
    Abstract Background Laquinimod is an oral immunomodulator in clinical development to treat relapsing-remitting multiple sclerosis (RRMS). Laquinimod is in clinical development for the treatment of multiple sclerosis and Huntington Disease (HD). The objective of this study is to assess the safety, tolerability, pharmacokinetics (PK) and cytoimmunologic effects following escalating doses of laquinimod in patients with RRMS. Methods One hundred twelve patients were randomly assigned to laquinimod/placebo in a series of separate dose-escalating cohorts starting from a daily oral dose of 0.9 mg/1.2 mg escalating to 2.7 mg, in 0.3 mg increments. Results Twenty-eight patients received placebo and 84 received laquinimod ranging from 0.9 to 2.7 mg. No deaths occurred. One serious adverse event (SAE) of perichondritis was reported, which was unrelated to laquinimod (0.9 mg). There was no increased incidence of adverse events (AEs) with escalating doses. Laquinimod-treated patients showed more abnormal laboratory levels in liver enzymes, P-amylase, C-reactive protein (CRP), and fibrinogen, but most shifts were clinically non-significant. The exposure of laquinimod was dose proportional and linear in the tested dose range. An immunological substudy showed significant dose-dependent decreases in 6-sulpho LacNAc + dendritic cell (slanDC) frequency following laquinimod compared to placebo. Conclusion Laquinimod doses up to 2.7 mg were safely administered to patients with RRMS. An in vivo effect of laquinimod on the innate immune system was demonstrated. Trial registration EudraCT Number: 2009-011234-99 . Registered 23 June 2009

    In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography

    No full text
    To quantify density of macular vascular networks over regions of interest in healthy subjects using optical coherence tomography angiography (OCTA). Prospective cross-sectional study. Setting was the Retina and Oncology Services of Wills Eye Hospital. Subjects with no known systemic disease and without retinal pathology were included. OCTA was performed on a 3 × 3-mm region centered on the macula and en face angiograms of the superficial and deep vascular networks were acquired. Vascular density was calculated using an automated image thresholding method over regions of interest. Foveal and parafoveal vascular density were calculated. The differences between vascular networks, sexes, and fellow eyes and correlation between vascular density, signal strength, and age, as well as reproducibility of measurements, were evaluated. A total of 198 healthy eyes were imaged, from which 163 eyes of 122 subjects were included based on image quality criteria. In the parafoveal region, deep vascular density was significantly higher than the superficial (52% ± 2.4% vs 46% ± 2.2%; P .05). There was a negative correlation between vascular density and age that persisted upon adjusting for signal strength. Vascular density measurements were highly correlated between separate imaging sessions with intraclass correlation coefficients of over 0.85 for all assessments. Calculation of vascular density using OCTA is a reproducible and noninvasive method to quantitate individual networks within the macula. Understanding normal values and their correlations could affect clinical evaluation of the macula in healthy patients and disease states
    corecore