313 research outputs found

    Supersymmetry on a Spatial Lattice

    Full text link
    We construct a variety of supersymmetric gauge theories on a spatial lattice, including N=4 supersymmetric Yang-Mills theory in 3+1 dimensions. Exact lattice supersymmetry greatly reduces or eliminates the need for fine tuning to arrive at the desired continuum limit in these examples.Comment: Version 3: Text brought in line with published version (extended discussion of orbifolding

    Environmental control of tropical cyclones in CMIP5: A ventilation perspective

    Get PDF
    The ventilation index serves as a theoretically based metric to assess possible changes in the statistics of tropical cyclones to combined changes in vertical wind shear, midlevel entropy deficit, and potential intensity in climate models. Model output from eight Coupled Model Intercomparison Project 5 models is used to calculate the ventilation index. The ventilation index and its relationship to tropical cyclone activity between two 20 year periods are compared: the historical experiment from 1981 to 2000 and the RCP8.5 experiment from 2081 to 2100. The general tendency is for an increase in the seasonal ventilation index in the majority of the tropical cyclone basins, with exception of the North Indian basin. All the models project an increase in the midlevel entropy deficit in the tropics, although the effects of this increase on the ventilation index itself are tempered by a compensating increase in the potential intensity and a decrease in the vertical wind shear in most tropical cyclone basins. The nonlinear combination of the terms in the ventilation index results in large regional and intermodel variability. Basin changes in the ventilation index are well correlated with changes in the frequency of tropical cyclone formation and rapid intensification in the climate models. However, there is large uncertainty in the projections of the ventilation index and the corresponding effects on changes in the statistics of tropical cyclone activity

    A Composite Little Higgs Model

    Full text link
    We describe a natural UV complete theory with a composite little Higgs. Below a TeV we have the minimal Standard Model with a light Higgs, and an extra neutral scalar. At the TeV scale there are additional scalars, gauge bosons, and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass squared parameter, without finetuning, occurs due to a softly broken shift symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale the theory has new strongly coupled interactions. A perturbatively renormalizable UV completion, with softly broken supersymmetry at 10 TeV is explicitly worked out. Our theory contains new particles which are odd under an exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is likely to be a feature of many theories of new TeV scale physics. The lightest parity odd particle, or "LPOP", is most likely a neutral fermion, and may make a good dark matter candidate, with similar experimental signatures to the neutralino of the MSSM. We give a general effective field theory analysis of the calculation of corrections to precision electroweak observables.Comment: 28 page

    The Intermediate Higgs

    Full text link
    Two paradigms for the origin of electroweak superconductivity are a weakly coupled scalar condensate, and a strongly coupled fermion condensate. The former suffers from a finetuning problem unless there are cancelations to radiative corrections, while the latter presents potential discrepancies with precision electroweak physics. Here we present a framework for electroweak symmetry breaking which interpolates between these two paradigms, and mitigates their faults. As in Little Higgs theories, the Higgs is a pseudo-Nambu Goldstone boson, potentially composite. The cutoff sensitivity of the one loop top quark contribution to the effective potential is canceled by contributions from additional vector-like quarks, and the cutoff can naturally be higher than in the minimal Standard Model. Unlike the Little Higgs models, the cutoff sensitivity from one loop gauge contributions is not canceled. However, such gauge contributions are naturally small as long as the cutoff is below 6 TeV. Precision electroweak corrections are suppressed relative to those of Technicolor or generic Little Higgs theories. In some versions of the intermediate scenario, the Higgs mass is computable in terms of the masses of these additional fermions and the Nambu-Goldstone Boson decay constant. In addition to the Higgs, new scalar and pseudoscalar particles are typically present at the weak scale

    The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: Linkages to Asian monsoon drought and El Niño–Southern Oscillation

    Get PDF
    [ 1] The west Pacific warm pool is the heat engine for the globe's climate system. Its vast moisture and heat exchange profoundly impact conditions in the tropics and higher latitudes. Here, September - November sea surface temperature (SST) variability is reconstructed for the warm pool region (15 degrees S - 5 degrees N, 110 - 160 degrees E) surrounding Indonesia using annually resolved teak ring width and coral delta O-18 records. The reconstruction dates from A. D. 1782 - 1992 and accounts for 52% of the SST variance over the most replicated period. Significant correlations are found with El Nino - Southern Oscillation (ENSO) and monsoon indices at interannual to decadal frequency bands. Negative reconstructed SST anomalies coincide with major volcanic eruptions, while other noteworthy extremes are at times synchronous with Indian and Indonesian monsoon drought, particularly during major warm ENSO episodes. While the reconstruction adds to the sparse network of proxy reconstructions available for the tropical Indo-Pacific, additional proxies are needed to clarify how warm pool dynamics have interacted with global climate in past centuries to millennia.</p

    Tropical Cyclogenesis Sensitivity to Environmental Parameters in Radiative-Convective Equilibrium

    Get PDF
    In this study, the relationship between the likelihood of tropical cyclogenesis and external environmental forcings is explored in the simplest idealized modelling framework possible: radiative-convective equilibrium on a doubly periodic f-plane. In such an environment, control of the equilibrium environmental sounding is reduced to three parameters: the sea-surface temperature, the Coriolis parameter, and the imposed background surface wind speed. Cloud-resolving mesoscale model simulations are used to generate environments of radiative-convective equilibrium determined by these three factors. The favourability of these environments for tropical cyclogenesis is measured in three ways: in terms of the maximum potential intensity (MPI) of the sounding, based on the thermodynamic theory of Emanuel; in terms of the ‘genesis potential’ determined by an empirical genesis parameter; and in terms of the propensity of weak initial vortices in these environments to form into tropical cyclones. The simulated environments of radiative—convective equilibrium with no vertical wind shear are found to be very favourable for tropical cyclogenesis. Weak initial vortices always transition to a tropical cyclone, even for rather low sea-surface temperatures. However, the time required for these vortices to make the transition from a weak, mid-level vortex to a rapidly developing tropical cyclone decreases as the MPI increases, indicating the importance of MPI in enhancing the frequency of cyclogenesis. The relationship between this ‘time to genesis’ and the thermodynamic parameters is explored. The time to genesis is found to be very highly (negatively) correlated to MPI, with little or no relationship to convective instability, Coriolis parameter, mid-level humidity, or the empirical genesis parameter. In some cases, tropical cyclones are found to form spontaneously from random convection. This formation is due to a cooperative interaction between large-scale moisture, long-wave radiation, and locally enhanced sea-surface fluxes, similar to the ‘aggregation’ of convection found in previous studies.National Science Foundation (U.S.) (Grant ATM-0432067

    Wake up, wake up! It's me! It's my life! patient narratives on person-centeredness in the integrated care context: a qualitative study

    Get PDF
    Person-centered care emphasizes a holistic, humanistic approach that puts patients first, at the center of medical care. Person-centeredness is also considered a core element of integrated care. Yet typologies of integrated care mainly describe how patients fit within integrated services, rather than how services fit into the patient's world. Patient-centeredness has been commonly defined through physician's behaviors aimed at delivering patient-centered care. Yet, it is unclear how 'person-centeredness' is realized in integrated care through the patient voice. We aimed to explore patient narratives of person-centeredness in the integrated care context
    corecore