150 research outputs found
Full-Duplex Systems Using Multi-Reconfigurable Antennas
Full-duplex systems are expected to achieve 100% rate improvement over
half-duplex systems if the self-interference signal can be significantly
mitigated. In this paper, we propose the first full-duplex system utilizing
Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to
half-duplex systems. MRA is a dynamically reconfigurable antenna structure,
that is capable of changing its properties according to certain input
configurations. A comprehensive experimental analysis is conducted to
characterize the system performance in typical indoor environments. The
experiments are performed using a fabricated MRA that has 4096 configurable
radiation patterns. The achieved MRA-based passive self-interference
suppression is investigated, with detailed analysis for the MRA training
overhead. In addition, a heuristic-based approach is proposed to reduce the MRA
training overhead. The results show that at 1% training overhead, a total of
95dB self-interference cancellation is achieved in typical indoor environments.
The 95dB self-interference cancellation is experimentally shown to be
sufficient for 90% full-duplex rate improvement compared to half-duplex
systems.Comment: Submitted to IEEE Transactions on Wireless Communication
Properties of High-Performance Concretes made of Black Sand at High Temperature
To modify high-performance concrete (HPC) fireproofing properties, black sand (BS) was partially substituted as fine aggregate at various levels. This study aims at evaluating the BS reliability in improving HPC durability properties for various construction applications based on its unique heavy minerals. To achieve this, five HPC series blends were setup to substitute fine aggregate independently with BS. Substitution percentages ranged from 15 to 100% with consistent supplementary cementing materials (SCMs) proportion for each gathering. Tests were performed to assess compressive strength before and after fire exposure under various temperatures of 250, 500 and 750 °C at different curing age. Generally, blending FA with BS was better than using SF with BS. Utilizing BS in the range of 15 to 60% as fine aggregate with 10% FA improves HPC fire-insulating properties. Besides, Z1 SEM analysis observed homogenously and compacted HPC microstructure at 250 and 500 °C. Doi: 10.28991/cej-2021-03091634 Full Text: PD
Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof
Greenhouse technology is a viable option for sustainable crop production in the regions of adverse climatic conditions. During hot seasons the heat input to a greenhouse causes the internal temperature to exceed its optimal value. The present study was devoted to construct an evaporative cooling system to reduce heat stress inside a greenhouse. Two identical small-scale greenhouses were designed, constructed, and installed on an open roof of a domestic house. The two greenhouses were cooled using fan-pad system. In addition, a thin water film was applied on the roof of one greenhouse to study the effect of roof water film and fan-pad (combined system) on the cooling performance. The two cooling systems were compared under the same condition. Three new evaporative cooling pads represented by Cryperus Alopecuroides Rottb (Samar), Cyerus Alternifolius (Purdy) and Cyperus Rotundus l (Nut-grass or Se'd) were adapted and evaluated. Three pad face air velocities ranged between 0.45 and 1.01 m s-1 and two thicknesses of 10 and 15 cm were used in the investigation of the cooling performance criteria. Results showed that the proposed cooling pads in the suggested evaporative cooling systems were able to maintain acceptable microclimatic conditions for greenhouse models. Se'd pad material proved more efficiency in temperature reduction. It was revealed that the temperature inside the greenhouse operated under the combination of roof water flow and fan-pad system was less than that for fan-pad greenhouse by about 1.1 to 5.44° C in the morning and afternoon respectively. The air relative humidity was increased due to humid effect provided by cooling system which protects crops from excessive transpiration and crop damage. The daily average cooling efficiencies of 88.4, 83.1 and 79.6% were obtained for Se'd, Purdy and Samar, respectively during testing days inside the combined system at 15 cm pad thickness and 0.45 m s-1 pad face air velocity. The Se'd pad material showed the highest efficiency as compared to other pad materials and could be used as an alternative pad material. Keywords: greenhouse, evaporative cooling, fan-pad system, pad material, roof water flo
Applications of AI and IoT for Advancing Date Palm Cultivation in Saudi Arabia
Date palm cultivation is an essential part of Saudi Arabia’s economy. However, it faces several challenges: water scarcity, improper farm management, pests and diseases, inadequate farming practices, processing and marketing, and labor shortages. Artificial intelligence (AI) and the Internet of Things (IoT) can help enrich crop management, enable predictive analytics, increase efficiency, and promote sustainability in date palm cultivation. Recently, interest in this sector has begun by applying the latest precision engineering technologies integrated with AI and IoT techniques to address these challenges. This chapter aims to provide an overview of the applications of AI and IoT-based technologies, such as sensors, ML algorithms, and data analytics, and their potential benefits and challenges in supporting date palm cultivation in Saudi Arabia. Specifically, the applications of AI and IoT in smart precision irrigation, smart systems, cold storage management, pest infestation prediction, and date fruit quality optimization. In addition, the potential economic and environmental benefits of using AI and IoT in date palm cultivation in Saudi Arabia and the challenges that need to be addressed to realize these benefits fully. The chapter provides insight into the latest developments and future directions for AI and IoT in date palm cultivation, providing valuable information for researchers and policymakers
Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths
In this paper, we introduce for the first time, a closed-form solution for the memristor-based memory sneak paths without using any gating elements. The introduced technique fully eliminates the effect of sneak paths by reading the stored data using multiple access points and evaluating a simple addition/subtraction on the different readings. The new method requires fewer reading steps compared to previously reported techniques, and has a very small impact on the memory density. To verify the underlying theory, the proposed system is simulated using Synopsys HSPICE showing the ability to achieve a 100% sneak-path error-free memory. In addition, the effect of quantization bits on the system performance is studied. © 2014 IEEE
A Semi-Distributed Electric Demand-Side Management System with PV Generation for Self-Consumption Enhancement
This paper presents the operation of an Electrical Demand-Side Management (EDSM) system in a real solar house. The use of EDSM is one of the most important action lines to improve the grid electrical efficiency. The combination between the EDSM and the PV generation performs a new control level in the local electric behavior and allows new energy possibilities. The solar house used as test-bed for the EDSM system owns a PV generator, a lead-acid battery storage system and a grid connection. The electrical appliances are controllable from an embedded computer. The EDSM is implemented by a control system which schedules the tasks commanded by the user. By using the control system, we define the house energy policy and improve the energy behavior with regard to a selected energy criterion, self-consumption. The EDSM system favors self-consumption with regard to a standard user behavior and reduces the energy load from the grid
- …