56 research outputs found

    Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases

    Get PDF
    The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy

    Carbon dating cancer: defining the chronology of metastatic progression in colorectal cancer.

    Get PDF
    Background: Patients often ask oncologists how long a cancer has been present before causing symptoms or spreading to other organs. The evolutionary trajectory of cancers can be defined using phylogenetic approaches but lack of chronological references makes dating the exact onset of tumours very challenging. Patients and methods: Here, we describe the case of a colorectal cancer (CRC) patient presenting with synchronous lung metastasis and metachronous thyroid, chest wall and urinary tract metastases over the course of 5 years. The chest wall metastasis was caused by needle tract seeding, implying a known time of onset. Using whole genome sequencing data from primary and metastatic sites we inferred the complete chronology of the cancer by exploiting the time of needle tract seeding as an in vivo 'stopwatch'. This approach allowed us to follow the progression of the disease back in time, dating each ancestral node of the phylogenetic tree in the past history of the tumour. We used a Bayesian phylogenomic approach, which accounts for possible dynamic changes in mutational rate, to reconstruct the phylogenetic tree and effectively 'carbon date' the malignant progression. Results: The primary colon cancer emerged between 5 and 8 years before the clinical diagnosis. The primary tumour metastasized to the lung and the thyroid within a year from its onset. The thyroid lesion presented as a tumour-to-tumour deposit within a benign Hurthle adenoma. Despite rapid metastatic progression from the primary tumour, the patient showed an indolent disease course. Primary cancer and metastases were microsatellite stable and displayed low chromosomal instability. Neo-antigen analysis suggested minimal immunogenicity. Conclusion: Our data provide the first in vivo experimental evidence documenting the timing of metastatic progression in CRC and suggest that genomic instability might be more important than the metastatic potential of the primary cancer in dictating CRC fate

    Inducible Nitric Oxide Synthase (iNOS) and Nitric Oxide (NO) are Important Mediators of Reflux-induced Cell Signalling in Esophageal Cells

    Get PDF
    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) has been implicated in both DNA damage induction and aberrant cell signalling in various tissue and cell backgrounds. We investigated here the role of iNOS and NO in DNA damage induction and nuclear factor-kappa B (NF-κB) signalling in esophageal cells in vitro. As esophageal adenocarcinoma develops in a background of Barrett’s esophagus secondary to reflux disease, it is possible that inflammatory mediators like NO may be important in esophageal cancer development. We show that reflux components like stomach acid and bile acids [deoxycholic acid (DCA)] can induce iNOS gene and protein expression and produce NO generation in esophageal cells, using real-time PCR, western blotting and NO sensitive fluorescent probes, respectively. This up-regulation of iNOS expression was not dependent on NF-κB activity. DCA-induced DNA damage was independent of NF-κB and only partially dependent on iNOS and NO, as measured by the micronucleus assay. These same reflux constituents also activated the oncogenic transcription factor NF-κB, as measured by transcription factor enzyme-linked immunosorbent assay and gene expression studies with NF-κB linked genes (e.g. interleukin-8). Importantly, we show here for the first time that basal levels of NF-κB activity (and possibly acid and DCA-induced NF-κB) are dependent on iNOS/NO and this may lead to a positive feedback loop whereby induced iNOS is upstream of NF-κB, hence prolonging and potentially amplifying this signalling, presumably through NO activation of NF-κB. Furthermore, we confirm increased protein levels of iNOS in esophageal adenocarcinoma and, therefore, in neoplastic development in the esophagus

    KRAS and BRAF mutations in circulating tumour DNA from locally advanced rectal cancer

    No full text
    There are limited data on circulating, cell-free, tumour (ct)DNA analysis in locally advanced rectal cancer (LARC). Digital droplet (dd)PCR was used to investigate KRAS/BRAF mutations in ctDNA from baseline blood samples of 97 LARC patients who were treated with CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX ± cetuximab in a randomised phase II trial. KRAS mutation in G12D, G12V or G13D was detected in the ctDNA of 43% and 35% of patients with tumours that were mutant and wild-type for these hotspot mutations, respectively, according to standard PCR-based analyses on tissue. The detection rate in the ctDNA of 10 patients with less common mutations was 50%. In 26 cases ctDNA analysis revealed KRAS mutations that were not previously found in tissue. Twenty-two of these (84.6%) were detected following repeat tissue testing by ddPCR. Overall, the ctDNA detection rate in the KRAS mutant population was 66%. Detection of KRAS mutation in ctDNA failed to predict prognosis or refine patient selection for cetuximab. While this study confirms the feasibility of ctDNA analysis in LARC and the high sensitivity of ddPCR, larger series are needed to better address the role of ctDNA as a prognostic or predictive tool in this setting

    Molecular profiling of colorectal pulmonary metastases and primary tumours: implications for targeted treatment

    Get PDF
    This study aimed to molecularly characterise colorectal pulmonary metastases (PM) and investigate whether their molecular profiles were concordant with those of the primary tumour. Clinical data and archival formalin fixed paraffin embedded tissue samples were retrospectively collected from patients who underwent ≥ 1 pulmonary metastasectomies for colorectal cancer between 1997–2012. Primary tumour and metastatic samples were analysed using a targeted capture sequencing panel of 46 cancer-associated genes. The 5-year progression-free and overall survival rates for the 81 patients in this study were 32% (95% CI 22–42%) and 77% (95% CI 66–85%) respectively. Fifty-four patients had samples available from ≥ 1 PM, and sequencing data were successfully obtained from 33 PM from 24 patients. The most frequently mutated genes were APC (71%), KRAS (58%) and TP53 (46%). Seventy-three percent of the 15 patients with matched primary and PM samples and 6 of the 7 patients (86%) with data from ≥ 2 PM had concordant molecular profiles. The concordance for KRAS and NRAS was 100%. At our institutions, patients with resectable colorectal PM had a favourable prognosis. RAS mutations were commonly detected in PM and the molecular profiles of colorectal PM were highly concordant with the primary tumour

    Molecular profiling of colorectal pulmonary metastases and primary tumours: implications for targeted treatment.

    Get PDF
    This study aimed to molecularly characterise colorectal pulmonary metastases (PM) and investigate whether their molecular profiles were concordant with those of the primary tumour. Clinical data and archival formalin fixed paraffin embedded tissue samples were retrospectively collected from patients who underwent ≥ 1 pulmonary metastasectomies for colorectal cancer between 1997-2012. Primary tumour and metastatic samples were analysed using a targeted capture sequencing panel of 46 cancer-associated genes. The 5-year progression-free and overall survival rates for the 81 patients in this study were 32% (95% CI 22-42%) and 77% (95% CI 66-85%) respectively. Fifty-four patients had samples available from ≥ 1 PM, and sequencing data were successfully obtained from 33 PM from 24 patients. The most frequently mutated genes were APC (71%), KRAS (58%) and TP53 (46%). Seventy-three percent of the 15 patients with matched primary and PM samples and 6 of the 7 patients (86%) with data from ≥ 2 PM had concordant molecular profiles. The concordance for KRAS and NRAS was 100%. At our institutions, patients with resectable colorectal PM had a favourable prognosis. RAS mutations were commonly detected in PM and the molecular profiles of colorectal PM were highly concordant with the primary tumour
    corecore