3,880 research outputs found

    Single Track Performance of the Inner Detector New Track Reconstruction (NEWT)

    Get PDF
    In a previous series of documents we have presented the new ATLAS track reconstruction chain (NEWT) and several of the involved components. It has become the default reconstruction application for the Inner Detector. However, a large scale validation of the reconstruction performance in both efficiency and track resolutions has not been given yet. This documents presents the results of a systematic single track validation of the new track reconstruction and puts it in comparison with results obtained with different reconstruction applications

    Concepts, Design and Implementation of the ATLAS New Tracking (NEWT)

    Get PDF
    The track reconstruction of modern high energy physics experiments is a very complex task that puts stringent requirements onto the software realisation. The ATLAS track reconstruction software has been in the past dominated by a collection of individual packages, each of which incorporating a different intrinsic event data model, different data flow sequences and calibration data. Invoked by the Final Report of the Reconstruction Task Force, the ATLAS track reconstruction has undergone a major design revolution to ensure maintainability during the long lifetime of the ATLAS experiment and the flexibility needed for the startup phase. The entire software chain has been re-organised in modular components and a common Event Data Model has been deployed during the last three years. A complete new track reconstruction that concentrates on common tools aimed to be used by both ATLAS tracking devices, the Inner Detector and the Muon System, has been established. It has been already used during many large scale tests with data from Monte Carlo simulation and from detector commissioning projects such as the combined test beam 2004 and cosmic ray events. This document concentrates on the technical and conceptual details of the newly developed track reconstruction, also known as New Tracking

    Updates of the ATLAS Tracking Event Data Model (Release 13)

    Get PDF
    In a previous document we have presented the ATLAS tracking Event Data Model (EDM) that has been developed during the recent restructuring of the ATLAS offline track reconstruction. The tracking EDM has become a cornerstone of the new modular track reconstruction algorithms of both tracking devices of the ATLAS detector, the Inner Detector and the Muon System. Recently, some components have undergone yet another design evolution targeted at completing missing modules and at establishing anticipated functionality for the startup of the ATLAS experiment. One particular aspect of the EDM is that is does not only have to fulfill the requirements of today's algorithmic modules, but has to provide the flexibility for future developments. This document is based on ATLAS software release 13.0.0

    Refitting of combined inner detector and muon spectrometer tracks from Monte Carlo samples by using the Kalman fitter and the STEP algorithm in the ATLAS experiment

    Get PDF
    In this paper we refit combined muon tracks using the Kalman fitter and the simultaneous track and error propagation (STEP) algorithm of the ATLAS tracking software. The muon tracks are simulated by GEANT4 in the full detector description, reconstructed by MUID, and refitted by the Kalman fitter in the ATLAS TrackingGeometry. The relative transverse momentum resolution of the refitted tracks is compared to the resolution of the refits done by the global chi-square track fitter, along with the resolution found by the MUID and STACO muon combination algorithms. Reconstructed invariant masses are compared in a similar way

    QCD corrections to the forward-backward asymmetries of cc and bb quarks at the Z pole

    Get PDF
    Measurements of the forward-backward production asymmetry of heavy quarks in Z decays provide a precise determination of \swsqeffl . The asymmetries are sensitive to QCD effects, in particular hard gluon radiation. In this paper QCD corrections for \AFBbb~ and \AFBcc~ are discussed. The interplay between the experimental techniques used to measure the asymmetries and the QCD effects is investigated using simulated events. A procedure to estimate the correction needed for experimental measurements is proposed, and some specific examples are given

    ATLAS Detector Paper Back-Up Note: Electrons and Photons

    Get PDF
    This is the supporting note to the ATLAS Detector paper for electron and photon reconstruction with the Inner Detector. It describes the software used to produce the results presented in the ATLAS Detector paper

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.

    Study of Inclusive J/psi Production in Two-Photon Collisions at LEP II with the DELPHI Detector

    Get PDF
    Inclusive J/psi production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction gamma gamma -> J/psi+X is seen. The number of observed N(J/psi -> mu+mu-) events is 36 +/- 7 for an integrated luminosity of 617 pb^{-1}, yielding a cross-section of sigma(J/psi+X) = 45 +/- 9 (stat) +/- 17 (syst) pb. Based on a study of the event shapes of different types of gamma gamma processes in the PYTHIA program, we conclude that (74 +/- 22)% of the observed J/psi events are due to `resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.Comment: 13 pages, 8 figures, Accepted by Phys. Lett.
    corecore