
Updates of the ATLAS Tracking Event Data Model
(Release 13)

T. Cornelissen, M. Elsing, A. Wildauer
CERN

N. van Eldik, E. Moyse
University of Massachusetts, USA

W. Liebig
NIKHEF, Amsterdam, The Netherlands

N. Piacquadio
Albert Ludwigs Universität Freiburg, Germany

K. Prokofiev
University of Sheffield, UK

A. Salzburger∗

Leopold Franzens Universität Innsbruck, Austria & CERN

December 6, 2007

ATLAS NOTE
The ATLAS Experiment, http://www.atlas.ch

Abstract

In a previous document [1] we have presented the ATLAS tracking Event Data Model (EDM)
that has been developed during the recent restructuring of the ATLAS offline track reconstruc-
tion. The tracking EDM has become a cornerstone of the new modular track reconstruction
algorithms of both tracking devices of the ATLAS detector, the Inner Detector and the Muon
System. Recently, some components have undergone yet another design evolution targeted at
completing missing modules and at establishing anticipated functionality for the startup of the
ATLAS experiment. One particular aspect of the EDM is that is does not only have to fulfill
the requirements of today’s algorithmic modules, but has to provide the flexibility for future
developments. This document is based on the ATLAS software release 13.0.40.

∗corresponding author: Andreas.Salzburger@cern.ch

1

A
T

L
-S

O
FT

-P
U

B
-2

00
7-

00
3

13
 D

ec
em

be
r

20
07

2

1 Introduction

A common event data model (EDM) is inevitable for the component software structure given by the
ATHENA framework [2]. It allows to define interfaces for the single tasks of the overall reconstruction
process. In other words, it defines the language that is spoken by the reconstruction algorithms.
In a previous paper [1] we have presented the concepts, design and implementation of the ATLAS
tracking EDM to very detail. The tracking EDM has become a cornerstone for the main ATLAS track
reconstruction algorithms in both the offline and third level trigger (Event Filter) application.
The tracking EDM has been deployed at full production level for almost three major release circles and
has undergone several extensions and modifications, adapting either to new algorithmic developments
or simply as an outcome of constant evaluation of the complied functionality. Recently, yet another
substantial design evolution has taken place which was mainly motivated to complete missing modules
and establish full functionality for first data taking with the ATLAS detector. A new, neutral track
parameterisation has been included to enhance constrained vertex fitting that includes both charged
and neutral particle representations. Additionally, the common Track class has been extended to store
material descriptions on reference surfaces that have been used in the track fit. Pseudo-measurements
have been introduced to stabilise poorly constrained fits, and the segment representations have been
coherently modified to enhance the inclusion of the pseudo-measurement objects.
A major design revolution has taken place for the representation of the tracking information for physics
analyses, the TrackParticle. This has been motivated to achieve full support of TrackParticle
objects by common tracking tools1 and to optimise the class shape for a common use of track repre-
sentations from both tracking devices, the Inner Detector (ID) and the Muon Spectrometer (MS).
This document describes the extensions and modifications that have been applied to the tracking
EDM since release 12.0.0 and presents — if necessary for the understanding of the presented context
— a short review of the various modules that are integrated in the tracking EDM. This document is
based on ATLAS offline release 13.0.40, a consecutive production release on basis of the ATLAS release
13.0.0. The authors are fully aware that this document only presents the corresponding status of the
EDM at one particular point in time. The EDM is the language that is used for the communication
between the individual parts of the full reconstruction chain — and consequently, like every language,
it is matter of modification and evolution. Future changes to the tracking EDM may thus be presented
in consecutive documents.

1.1 The Track Class

The ATLAS Tracking EDM is concentrated around a flexible Track class that is realised as a container
of TrackStateOnSurface (TSOS) objects. The single TrackStateOnSurface objects are able to
hold polymorphic tracking information: track expression with respect to a given surface in form of
track parameters objects, hit information by an extended class of a common MeasurementBase class,
traversed material or integrated material effects, a FitQuality object and an identification type.
Table 1 lists the possible base classes that can be held by the TrackStateOnSurface class. The
fitted track representation to the nominal beam line or vertex position, the so-called Perigee, is
e.g. represented by one TrackStateOnSurface object, just like every single hit, a track segment, or
even a fitted scattering angle. The flexible container structure of the Track object guarantees hereby
that one single trajectory representation can be used for different fitter types, tracking devices or
reconstruction algorithms. With release 13.0.0, the way how to store material interactions on a Track
object has been changed (see Sec. 6), which led to an extension of the TrackStateOnSurface class;
Figure 1 shows an illustrated track as a collection of TrackStateOnSurface objects.
Track fitting requires, in general, two main data structures: the representation of measurements to be
integrated in the track fit, and the representation of the (fitted) trajectory, in the following referred to
as track parameterisation. In ATLAS, track fitting is carried out on calibrated hits or hit collections
that extend a common base class, the MeasurementBase. The track parameterisation is done using
classes that extend a ParametersBase interface, restricted to a charged parameterisation for child
objects that can be stored in the Track class. This is because neutral particles are not matter of
tracking in the sense of track finding and fitting, since they do not cause hit signatures in the tracking

1E.g. the extrapolation engine or the vertexing tools.

3

Table 1: The different (base) classes that can be contained by the TrackStateOnSurface class. All of the
given classes are contained and returned by pointers, thus they can be left out optionally.

Leaf Package Description
FitQualityOnSurface χ2 and number of degrees of freedom
TrackParameters the track parameterisation (or intersection) w.r.t. a surface
MeasurementBase the measurement expression
ScatteringAngleOnTrack a fitted scattering on track
MaterialEffectsOnTrack applied material effects description

devices. The found tracks are input to higher level reconstruction modules such as vertex fitting or
topological event fitters that include neutral particles in particular for mass-constrained fits. Common
tracking tools such as the extrapolation engine or the various vertex fitters need to operate on both
neutral and charged track representations. The formerly existing model that was limited to charged
track parameterisations has therefore been extended to cope with charged and neutral trajectories in a
type safe way. The newly integrated schema is presented in further detail in Sec. 2, the adaption of the
vertexing data model to this new base class is described in Sec. 5. The full object tree of measurement
representations that has been recently adapted with pseudo-measurements and modified track segment
representations is presented in Sec. 3.

d0z0

TSOS 1

TSOS 2

TSOS 3

TSOS 4
lx

hx
ez

ex

ey lx

ly

q/pf

track

Figure 1: An illustrated Track as a container of four different TrackStateOnSurface (TSOS) objects. TSOS
1 contains the track representation to the nominal beam line, the so-called Perigee representation. TSOS
2 holds both a measurement through a hit information and the fitted track parameters on the measurement
surface, while TSOS 3 represents an applied material interaction — illustrated through a curvature change of
the track. Finally, TSOS 4 integrates several fitted measurements through a single segment representation.

1.1.1 Track Slimming

One important aspect of the tracking EDM is the size which the written data takes when being stored
on disks. This is far less trivial than it first sounds: on the one hand, small persistent representations
of the tracking EDM are necessary to comply with the computing budget of the experiment, but on
the other hand, as much information as possible should be accessible for the physicist to allow optimal
event analysis techniques. In the context of the tracking EDM, a major step towards achieving a good
balance between disk size and usability was to identify all information that can be recreated when the
track is read back from disk storage. In principle, this includes all fitted parameters and estimated

4

covariances, but excludes obviously the hit collection. A simple refit such a slimmed track after it
has ben read from the persistent storage would recreate the full track information as achieved in the
original event reconstruction. The flexible TSOS container design of the Track class was hereby a
key feature, since it allows to create a track collection of stripped hits and a Perigee representation2

that is then written to disk. The track collection size could be significantly reduced (depending on
the track collection, the reduction factor varies between 6 to 10).

Representation for Physics Analysis Few analyses based on data taken with the ATLAS detector
will directly incorporate the Track objects. The Track itself is, in general, not more than a trajectory
representation of the particle when passing through the detector, while the — for the event analysis
— most important representation of the particle as a four momentum vector at the production vertex
is not given by the Track; neither is particle identification3 nor the vertex association performed at
the stage of track reconstruction. In the ATLAS EDM, the Track information is represented as a
TrackParticle object for further use in a particle-oriented event analysis. Vertex fitting with or
without constraints can be performed on TrackParticle objects, but needs the extrapolation engine
to express the trajectory with respect to the (iteratively fitted) vertex position. To enhance common
tracking tools to work together with the TrackParticle object (which combines a broader bundle
of aspects to be dealt with in event reconstruction), without breaking the philosophy of keeping the
tracking modules independent from specific reconstruction algorithms, a new TrackParticleBase
class has been introduced that concentrates the tracking-relevant information and builds the new
interface for tracking tools. These tools are designed to operated also on event reconstruction and
analysis level; a detailed description of the new TrackParticleBase class can be found in Sec. 4.

2 Trajectory Parameterisation: The ParametersBase class

The parameterisation of a particle trajectory with respect to a given surface is inevitable for track
reconstruction. It can be done in many different ways, for a charged trajectory in magnetic field a
minimal set of five parameters has to be chosen; it can be reduced by one parameter for a trajectory
representation in a no-field environment or a neutral particle that follows a straight line. This is, since
the charge q and the momentum magnitude p are superfluous for the purely geometrical description of
a line. For constrained vertex fitting that includes both charged and neutral particle traces, however,
the momentum (hypothesis) is necessary — see Sec. 5.
The trajectory parameterisations for both neutral and charged particles are thus realised in the ATLAS
tracking EDM as a set of five parameters

x = (l1, l2, φ, θ, c/p)T , (1)

when l1 and l2 denote the local coordinate expression on the given surface (and thus depend on the
surface type), φ and θ are the azimuthal and polar angle, respectively, and c is defined as

c =

q if q 6= 0,

1 if q = 0.
(2)

For every surface type that is defined in the ATLAS reconstruction geometry [4], a dedicated pa-
rameterisation exists, realised by a specific class to ensure an unambiguous identification of the given
measurement frame. In track fitting — since the trajectory itself can not be measured, but only a lo-
calisation at discrete points in the detector can be done — a set of measurement mapping functions hj

is needed to map the track parameterisation on a measurement surface to the measured coordinates
and thus to establish a predicted measurement4. This yields for the single predicted measurement

2This is for the simple convenience of the user that is not forced to refit the track collection if the focus is only drawn
onto the impact parameterisation.

3Only a ParticleHypothesis exists for the steering of material effects integration.
4Since the two most common track fitting techniques, the least squares method and the Kalman filter are both linear

estimators, these measurement functions are even required to be linear, or at least approximated by a linear function.

5

components
mpred

j = hj(x), (3)

or, when using matrix notation and assuming linear measurement mapping functions at the detection
device i

mpred
i = Hixi. (4)

The predicted measurement is necessary when building the hit residuals ri, where the measurement
position mi on the ith device is compared with the predicted or fitted trajectory intersection on the
measurement surface, explicitly

ri = mi −mpred
i = mi −Hixi. (5)

Since in ATLAS the track parameterisation on a given surface has been chosen to be expressed in local
surface coordinates, the measurement functions are simply given by projection matrices, yielding

H1 =
(

1 0 0 0 0
)
, (6)

for a one-dimensional measurement in the first local coordinate, and

H3 =
(

1 0 0 0 0
0 1 0 0 0

)
(7)

for a two-dimensional position measurement, respectively. Most actual measurements taken with
the technologies of the ATLAS sub-detector are given in these two forms. However, the ATLAS
tracking EDM is not restricted to measurements of this type. Instead, every possible combination
of sub-sets measured out of the full parameterisation can be chosen, which is exploited by the new
PseudoMeasurementOnTrack class and the Segment classes in particular, see Sec. 3. This leads to
31 different projection matrices Hi and requires in addition an internal identification schema for the
parameter vector5. The LocalParameters class that extends the HepVector class of the CLHEP [3]
maths library establishes a mechanism that provides the user with an internal identification schema
— realised in a bitwise packed key i — of the contained parameters and the appropriate projection
matrix. An example of the simple usage of the LocalParameters class can be found in the Appendix,
Sec. A.2. In this sense, the chosen track parameterisation can be regarded as being motivated by the
measurement setup of the detector. Figure 2 shows a track expressed w.r.t. two different reference
surfaces in the ATLAS tracking EDM.
Since the parameterisations of a trajectory state with respect to a given surfaces differ for charged and
neutral particles only slightly in the interpretation of one parameter, it would be a natural attempt
to represent them with the same EDM object. Equation (2), however, shows the potential danger of
such a choice: a particle with charge q = 1 would then be expressed through the same signature as a
neutral particle represenation of same momentum. One main design principle of the ATLAS tracking
EDM is type safety, i.e. any misinterpretation of a given data object has to be avoided6. It can be
argued that a simple check of the charge parameter q could distinguish the two identical cases, but
this relies on every user to perform this check before the parameter vector can be interpreted. A type
safe model has to be favored preferably without code duplication. In ATLAS, this is realised through
a C++ template method that allows to define the actual class type through the template parameter.
A small helper class, the so-called ChargeDefinition that is extended by a Neutral and a Charged
class is hereby used to define the appropriate template argument of the given track representation. A
charged trajectory — when being expressed with respect to a planar surface — is then defined as a
class extending an AtaPlaneT<Charged> class, while a neutral trajectory representation is enhanced
by an AtaPlaneT<Neutral>. Since the common implementation is shared by the two classes, but
type safety is preserved through the template mechansim, both main requirements — type safety and
avoiding code duplication — have been met. The ChargeDefinition classes define for convenience
an implicit cast operator to a double, returning zero for the Neutral and ±1 for the Charged class,
respectively. Since the charge is not stored otherwise in the parameter classes, it is impossible to
construct an inconsistent object.

5There are, in total, 32 = 25 possible subsets of parameters, but the empty set is excluded, since there exist no
invalid measurement representations in the ATLAS tracking EDM.

6Clearly no one wants to have a curved photon track in magnetic field, simply for the fact that the used propagation
tool misinterpreted the 1/p parameters of a neutral representation as a q/p information.

6

p

track

d0

ex

ey

ez

p
T

x-y plane

z0

φ

θ

p

track

ex

ey

ez

p
T

x-y planeφ

θ

lx

ly

ly
lx

Figure 2: A track parameterised with respect to two different surfaces: the expression to the nominal z
axis yields the Perigee representation of the track to the left, while the expression of an intersection with a
planar surface (right) is described by the AtaPlane object. The parameterisations differ only in the first two
local coordinates that are defined by the surface type and are optimised with respect to the given detector
layout. The momentum expression through the azimuthal angle φ, the polar angle θ and the (charged) inverse
momentum is identical for both cases.

Hidden Template Method The authors are aware that template solutions are in general not amongst
the most popular techniques within the client community and track representations belong clearly to
the most widely spread classes of the ATLAS tracking EDM. The template resolving has therefore be
hidden from the user through inserting actual class types for the track parameterisations on the various
surfaces for charged and neutral particles that extend the class templates to non-virtual objects7.
Figure 3 shows an UML class diagram that illustrates the charged and neutral track parameterisation
with respect to a planar surface.
The ParametersBase base class is restricted to the attributes that are identical for both a neutral and
a charged trajectory parameterisation and can be used for applications that only work on the global
parameters of a trajectory expression, i.e. a position, a momentum and the charge. The template
mechanism, on the other hand, forces the client to resolve the template argument and consequently
an object has to be identified to be either of Neutral or Charged flavor, before the parameters vector
can be retrieved8.

3 Measurement representation: The MeasurementBase Class

Measurement representations exist in manifold ways in the ATLAS tracking EDM: in most of the
cases, measurements are directly integrated as fully calibrated representations clusters or drift radii.
These objects are realised as classes that extend the RIO OnTrack class, and represent either one-
dimensional or two-dimension measurements; the calibration applied on the input objets from the
clusterisation process (in ATLAS terms PrepRawData objects) is hereby based on the already collected
track information. In the MS, a second additional calibration step is applied on RIO OnTrack objects
in the preparation phase for track fitting (pre-tracking), that is based on the local pattern recognition
output for the various detector chambers.
As described in [1] an even more flexible way of representing single and combined measurements with a
extended MeasurementBase object has been implemented in ATLAS. These types include pre-grouped
(and fitted) measurements as Segment realisations and a dedicated competing measurement collection

7The technically interested reader may find that the class templates mark virtual class descriptions and can thus not
be instantiated in the program flow.

8In C++ terms this is done using the dynamic cast operator.

7

AtaPlane

TrkParametersBase

ParametersBase
m_position : const GlobalPosition*
m_momentum : GlobalMomentum*
s_numberOfInstantiations : unsigned int
position() : const GlobalPosition&
momentum() : const GlobalMomentum&

numberOfInstantiations() : unsigned int

T
AtaPlaneT

m_associatedSurface : const PlaneSurface*
m_localPosition : const LocalPosition*
associatedSurface() : const PlaneSurface*

T
ParametersT

m_parameters : HepVector*
m_chargeDefinition : T*
localPosition() : const LocalPosition&
parameters() : const HepVector&
charge() : const double
associatedSurface() : const Surface*
setAssociatedSurface(surface : const Surface*)
checkRangePhiTheta()
flipCharge()

TrkEventPrimitives

NeutralCharged

ChargeDefinition
m_charge : double
value() : double
operator double()
flipSign()

NeutralAtaPlane

TrkParameters TrkNeutralParameters

charge() : const double

Figure 3: The charged and
neutral track parameterisation as
realised in the ATLAS tracking
EDM. A ChargeDefinition base
class and its extended Charged and
Neutral classes are located in the
TrkEventPrimitives package. The
two child classes are used to de-
fine the type of the templated tra-
jectory representations — in the il-
lustrated example with respect to
a PlaneSurface of the ATLAS re-
construction geometry.
The flipCharge() and the
flipSign() methods are hereby
necessary just for technical aspects,
but are not accessible for the client.

(CompetintRIOsOnTrack) on one detection surface that enhance fuzzy hit assignment techniques.
Both classes can be resolved into their constituents and thus can the hits be individually included
in the track fit. On the other hand, the Segment class represents already several measurements
at different discrete positions in the detector and holds, in general, more information than a simple
localisation of the track trajectory on a reference surface. This is in many cases at least one directional
parameter of the momentum vector, or even a momentum estimate itself. The Segment classes can
therefore be used for fast track matching and play a particularly important role in the MS pattern
recognition.
RIO OnTrack and Segment objects are mainly used in track fitting or local pattern recognition. For
pattern recognition, a global representation is often used for trajectory seeding on the one hand,
or for global pattern techniques (such as histogramming methods or Hough transformations) on the
other hand. The SpacePoint class object establishes global hit representations of measurements. A
SpacePoint can hereby represent a single or a collection of measurements if the spatial information
provided by one measurement together with the measurement surface is not sufficient to constrain a
global position.
All these different measurement representations extend one single base class, the MeasurementBase
interface. The MeasurementBase concentrates the minimal information needed for track fitting, i.e.
a one- to five-dimensional measurement, the according measurement errors and the corresponding

8

Segment
m_localParameters : const LocalParameters*
m_localErrorMatrix : const ErrorMatrix*
m_fitQuality : FitQuality*
m_containedMeasBases : DataVector< const MeasurementBase >*
s_numberOfInstantiations : unsigned int
containedMeasurements() : const std::vector< const Trk::MeasurementBase * >&
numberOfMeasurementBases() : const unsigned int
measurement(: unsigned int) : const MeasurementBase*
fitQuality() : const FitQuality *
numberOfInstantiations() : unsigned int

CompetingRIOsOnTrack
m_localParameters : const LocalParameters*
m_localErrorMatrix : const ErrorMatrix*
m_rotsnum : unsigned int
m_indexMaxAssignProb : unsigned int
m_assignProb : const std::vector< AssignmentProb >*
numberOfContainedROTs() : const unsigned int
indexOfMaxAssignProb() : const unsigned int
rioOnTrack(: unsigned int) : const RIO_OnTrack*
assignmentProbability(indx : unsigned int) : const AssignmentProb
ROTsHaveCommonSurface(withNonVanishingAssignProb : const bool) : const bool

SpacePoint
m_clusList : const std::pair<const PrepRawData*, const PrepRawData*>*
m_locPar : Trk::LocalParameters*
m_elemIdList : std::pair< IdentifierHash, IdentifierHash >
m_position : const Trk::GlobalPosition*
m_globalErrMat : const Trk::ErrorMatrix*
s_numberOfInstantiations : unsigned int
elementIdList() : const std::pair< IdentifierHash, IdentifierHash >&
position() : const Trk::GlobalPosition&
clusterList() : const std::pair<const PrepRawData*, const PrepRawData* >&
numberOfInstantiations() : unsigned int
setupGlobalFromLocalErr() : const ErrorMatrix*

MeasurementBase

clone() : MeasurementBase*
localParameters() : const LocalParameters&
localErrorMatrix() : const ErrorMatrix&
associatedSurface() : const Surface&
globalPosition() : const GlobalPosition&

RIO_OnTrack
m_localParams : const LocalParameters*
m_localErrMat : const ErrorMatrix*
m_identifier : Identifier
s_numberOfInstantiations : unsigned int
prepRawData() : const Trk::PrepRawData*
idDE() : const IdentifierHash
detectorElement() : const TrkDetElementBase*
identify() : Identifier
numberOfInstantiations() : unsigned int

PseudoMeasurementOnTrack
m_localParams : const LocalParameters*
m_localErrMat : const ErrorMatrix*
m_associatedSurface : const Surface*
m_globalPosition : const GlobalPosition*

Figure 4: Simplified UML diagram, showing the classes that extend the MeasurementBase class and can be
used for the representation of one to many measurements in the ATLAS tracking EDM. Only the base classes
of the inherited families are shown, concrete detector-specific implementations of most of the classes can be
found in the corresponding sub-detector repositories.

reference frame that is provided by a Surface object of the ATLAS reconstruction geometry. In fact,
the ITrackFitter interface is defined to operate only on a set of MeasurementBase objects and thus
common track fitter implementations are completely shielded from actual measurement representation.
A polymorphic track fit, combining several different types is often performed and eases successive hit
inclusion, track segment matching or simply saves CPU time when a prior fit has already compacted
the information of several single hits into one representation.

Pseudo-Measurement Representations In ATLAS, there exist several tracking devices that can not
determine the full track parameterisation without information from other devices: e.g. the Transition
Radiation Tracker (TRT) in the Inner Detector or the Monitored Drift Tube (MDT) chambers in
the Muon Spectrometer. Although a full track parameterisation can not be obtained, it is necessary
that isolated measurement sets from these devices can serve as an input for track fitting. For the ID
this in particular important to enhance track segment search from the detector boundary towards the

9

interaction point. In the MS, on the other hand, the track finding starts often with a segment search
on chamber level. To constrain the track fit it is necessary to include an artificial measurement with a
crude estimate of the missing coordinate. This estimate can be at the level of within the chamber or in
the barrel, i.e. something that can be included without biasing the fit result but can be postulated on
the other hand by the pure existence of the measurement. A generic PseudoMesurementOnTrack has
therefore be created for such a purpose. It extends the MeasurementBase base class, and implements
the minimal interface necessary for fitting. The UML class diagram can be seen as part of Fig. 4

Track segment adaption to the pseudo-measurements The inclusion of fake measurements evoked
a necessary adaption of the Segment classes. Segments are often used for local pattern recognition in
the track fit of hit collections from single detector components that are prone to lead to unconstrained
fits. It is thus necessary that Segment objects can contain the new PseudoMeasurementOnTrack
objects which led to a shift from PrepRawData to MeasurementBase as the top level class contained
by hit collections in a single track segment. Since segments are the most complex objects in the
MeasurementBase tree and depend on the algorithm that has formed them, a new authorship schema
has been included to achieve transparency about the object origin in higher level reconstruction
algorithms. A list of currently registered Segment authors can be found in Sec. A.3.

4 The Analysis Object: the TrackParticleBase

In the ATLAS computing model, there exist two main levels of event data processing, that are reflected
by the written data collections: the Event Summary Data (ESD) and the Analysis Object Data (AOD).
ESD based algorithms and modules are in total part of the event reconstruction, and clearly first stage
analyses to be done with the ATLAS detector, mainly targeted at evaluating the detector performance
and calibrating or aligning the detector components will need access the event data to full detail level.
However, recording and transferring all data taken with the ATLAS detector to remote sites at ESD
level would exceed the computing capacities of the experiment and — in particular — of the attached
institutes. Therefore a compression of the ESD to AOD is done, that should still provide sufficient
information for modern analyses techniques, while reducing the disk storage significantly. The track
representation in the AOD containers is the so-called TrackParticle. Since the TrackParticle
combines information from tracking devices, calorimetry and particle identification algorithms, it can
not be subject of the tracking EDM. Until recently this resulted in the fact that the TrackParticle
class was not known to common tools used in track reconstruction. Reconstruction tools therefore
acted mainly as wrappers for common tracking tools, forwarding the only available information — the
measured track representation at the Perigee definition close to the interaction point — to common
tracking tools such as vertex fitters and the extrapolation engine. In particular for tracks being found
with stand-alone reconstruction algorithms in the Muon Spectrometer, this situation was far from
optimal.
Recently, the TrackParticle class has undergone a major design evolution that established a new
TrackParticleBase class in the Tracking repository. The introduced TrackParticleBase concen-
trates the tracking relevant data, while remaining independent from higher level reconstruction algo-
rithms. The restrictive definition of the TrackParticle to be defined only through a MeasuredPerigee
object has vanished in the base class and has been replaced by a vector of ParametersBase objects.
Yet another reason why an intervention has become inevitable was the integration of the neutral
track parameterisation that, consequently, has to be followed in the data hierarchy down to the anal-
ysis representation. However, keeping in mind that all inherited child classes are aimed to describe
objects to be used in physics analyses and thus a Lorentz-vector representation should be existent,
one of the parameters provided has to be used to define the four-momentum vector. This parame-
ter has to be identified explicitly at the construction of the TrackParticleBase object. The widely
used TrackParticle now inherits from the TrackParticleBase class and again restricts the defining
parameter to be the MeasuredPerigee representation (or, e.g. the NeutralMeasuredPerigee for a
neutral particle representation). This is, since the analysis of the underlying event clearly deals with
the particle parameters closest to production vertex. Figure 5 shows a simplified UML class diagram
for the newly created TrackParticleBase, Fig. 6 illustrates how the muon TrackParticle profits
from the more flexible way of holding parameters at several stages within the detector.

10

INavigable4Momentum
Reconstruction

P4PxPyPzE

Tracking

TrackParticle
m_cachedMeasuredPerigee : const Trk::MeasuredPerigee*
measuredPerigee() : const Trk::MeasuredPerigee*

TrackParticleBase
m_originalTrack : ElementLink<Track>
m_trackParticleOrigin : TrackParticleOrigin
m_elVxCandidate : ElementLink<VxCandidate>
m_trackParameters : std::vector< const Trk :: ParametersBase * >
m_trackSummary : const Trk::TrackSummary*
m_fitQuality : const Trk::FitQuality*

charge() : double
originalTrack() : const Trk::Track*
reconstructedVertex() : const Trk::VxCandidate*
particleOriginType() : TrackParticleOrigin
definingParameters() : const Trk::ParametersBase&
trackParameters() : const std::vector< const Trk :: ParametersBase * >&
trackSummary() : const Trk::TrackSummary*
fitQuality() : const Trk::FitQuality*
perigee() : const Perigee*
setStorableObject(trackColl : const TrackCollection*)
setStorableObject(vxColl : const VxContainer*)

TrackParticleBase(trk: const Trk::Track*, trkPO: const TrackParticleOrigin,
vxCand: const Trk::VxCandidate*, trkSum: const Trk::TrackSummary*,
pars: std::vector<const Trk::ParametersBase*>&, definingParameters:
const Trk::ParametersBase*, fitQuality: const FitQuality*)

Figure 5: Simplified UML diagram, showing the new TrackParticleBase and the extended
class TrackParticle that marks the analysis representation of tracking. The constructor of the
TrackParticleBase shows the new philosophy that allows multiple representations of the underlying track
within the detector, while keeping one ParametersBase object specifically outstanding to identify the track
state where the four-momentum is defined.

Figure 6: The new ParticleBase ob-
ject illustrated in an example based on
the ATLANTIS [5] event display. The
Track is hereby represented with one sin-
gle TrackParticleBase object at three
different stages in the detector: as a
MeasuredPerigee expression close to the
interaction point (defining parameters),
through TrackParameters at the exit of
the Inner Detector and the Calorimeter, re-
spectively.

parameters
at vertex
(defining)

parameters
at ID exit

parameters
at Calorimeter exit

11

5 Event Data Model for Vertex Reconstruction

The part of the ATHENA event data model that is related to the vertex reconstruction has changed
significantly between releases 12 and the latest production release on top of the 13.0.0 base release.
In general, this changes are related to the introduction of two new EDM concepts: the use of the
ITrackLink and the use of the Trk::ParametersBase class — which is described in more detial in
Sec. 2. The new parameterisation base class replaces the formerly used Trk::TrackParameters class,
that is limited to charged trajectories. This marks a first step of preparation towards the vertex
reconstruction EDM for fully constraint and kinematic fitting algorithms9. Starting from ATHENA
rel. 13.0.20, the dependencies on the Trk::TrackParameters are dropped in all classes of the vertexing
EDM; the use of Trk::ParametersBase is introduced instead. This change has been motivated by the
fact that the Trk::ParametersBase is the new common base class for both neutral and charged track
parameters. The future inclusion of neutral trajectories in the vertex fits thus becomes possible10.

5.1 The Trk::ITrackLink class

The ITrackLink class is a new part of the Tracking EDM, implemented in the dedicated TrkTrack-
Link package. The class itself is purely abstract and so far has only two concrete implementations:
the Trk::LinkToTrack class in the TrkTrack package and the Trk::LinkToTrackParticleBase in the
TrkParticleBase package. The latter two classes also inherit from the ElementLink <TrackCollection>
and ElementLink <TrackParticleBaseCollection> respectively.
This schema of inheritance allows one to use a pointer to the Trk::ITrackLink to manipulate both a
Trk::Track and Trk::TrackParticleBase and thus use the same EDM components on both AOD
and ESD levels.
An example of the use of a pointer to the Trk::ITrackLink as a private member, can be found in the
new version of the Trk::VxTrackAtVertex class. Here the use of the ITrackLink is justified by the
fact that it gives the access to initial parameters of tracks used to fit a vertex, disregarding, whether
the fit was done on the AOD or the ESD level. This allows to reduce significantly the storage size
of reconstructed vertices: the initial perigee parameters of each trajectory does not need be stored
anymore.
The disadvantage of the use of the ITrackLink is that the user needs to perform a dynamic cast
operation each time the knowledge of the exact type of the ElementLink is required. The parameters
of the trajectory, however, can be accessed directly via the a dedicated access method.

6 Material Effect Description on Track

The correct treatment of effects caused by the interaction of the particle with detector material is
inevitable for track reconstruction. A dedicated reconstruction geometry [4] is therefore built and
provides a simplified version of the ATLAS detector setup to track reconstruction algorithms. The
integration of material effects happens, in general, during the track fit itself and is thus not necessarily
matter of the event data model. However, the tracking EDM has been recently expanded to store the
applied corrections due to material interactions directly on the track class. This can be either a fitted
parameter from global track fitting, realised through a ScatteringAngleOnTrack object, or a more
profound description of the traversed material in terms of radiation length X0 and applied energy loss
corrections. Latter is made possible through a MaterialEffectsOnTrack object. Both descriptions
can be stored as primary classes on a TrackStateOnSurface instance, see Sec. 1.1.
Allowing to store material effects together with the track object has been motivated by the following
considerations:

• recent developments, e.g. in electron track fitting, can provide information about the applied
material effects for further processing, such as track kink finding, or calorimeter cluster matching;

9In a second step, which is currently under preparation, a new extended track parameterisation will be introduced
that adds the mass parameter to the existing track parameterisation as described in Sec. 2

10The obvious disadvantage of this change is the need to dynamic cast the parameters returned by a particular class
in order to understand whether this is a charged or a neutral trajectory.

12

• stored material effects on track will allow refitting of tracks from different sources that use
different material descriptions, in particular for global refitting, where several competing material
descriptions exist. This enhances a dedicated validation and comparison of the different material
integration algorithms;

Both MaterialEffectsOnTrack and ScatteringAngleOnTrack have been extended to host a surface
which defines the spatial information along the track, where the actual update had been integrated.

Material Integration from custom Sources The MaterialEffectsOnTrack class has also become
the data object for custom material integration into the track extrapolation engine [6]. In track ex-
trapolation, the description of the material is, in general, taken from a simplified detector description.
The extrapolation engine, however, allows users to optionally provide custom material effects to the
extrapolation process. The integrated MaterEffectsOnTrack objects can hereby originate from other
parametric descriptions, material maps, or even from detector measurements such as the energy loss
application based on calorimeter measurements for combined track reconstruction.

7 Conclusion

Four years after the Final Report of the Reconstruction Task Force (RTF) [7] invoked a redesign of the
ATLAS reconstruction software (based on a common EDM and a component software structure), and
less than one year before data taking with the deployed ATLAS detector, the tracking EDM is close
to completion. The tracking EDM classes provide the necessary functionality for all current aspects of
track reconstruction and have been optimised in both functionality and memory usage. The tracking
EDM has been recently adapted for new developments and expanded to support common tacking
tools in the user event analysis.
It has proven its stability and functionality during test beam data taking and the commissioning runs
using cosmic rays, while being flexible enough to integrate new developments and corrections without
breaking existing service. The ultimate aim is to provide a powerful EDM for the long lifetime of
the experiment that allows backward compatibility for reading data during the entire period of data
taking.

A Appendix

A.1 CVS Repository Structure

The described EDM classes in this document can be entirely found in the Tracking/TrkEvent con-
tainer package of the ATLAS CVS software repository [8]. The referred surface classes are located
in the Tracking/TrkDetDescr/TrkSurfaces package, and the event primitives, e.g. the position vec-
tors, algebraic vectors and matrices are either part of the CLHEP math library or bundled in the
TrkEvent/TrkEventPrimitives utility package.

A.2 The LocalParameters Class

While track parameterisations always provide the full five parameter set to describe the track (see
Sec. 2), measurements can be expressed as any subset of one to five parameters of the full parameter-
isation (Sec. 3). In track fitting, where usually residuals on measurement surface are build that are
the differences between the predicted measurement that is given through the track parametersiation
and the track extrapolation and the actually taken measurement, it is necessary to collaps the full
parameters vector or the track parameters to the ones represented by the measurement. This is done
by so-called measurement mapping functions. Measured parameters can hereby exceed the simple
localisation of a track on a surface, since track segments can also be included into a track fit as a
measurement (and usually include already directional information).
In the tracking EDM, the full parameter vector is expressed through a five-dimensional HepVector
object from the CLHEP maths library. The HepVector class is not restricted to any dimension and

13

in a naive approach the measurement representation could simply use the same class to represent the
(mostly lower-dimensional) measured parameters. However, for the client algorithm it is not obvious
which of the five parameters — or what subset of the five parameters — is stored in the HepVector
object. To save both disk space and the consumption of physical memory it is however desired to
store only the obtained parameters of the measurement in the appropriate data class. Clearly this can
be handled by convention, but in a generic model, where track measurements can be used without
knowing the underlying detector technology, this is far from trivial. The solution to this problem has
been the introduction of the LocalParameters class that extends the HepVector by an identification
schema. The measurements are hereby expressed by a key which is the integer representation of a
binary number that puts 0 for non-measured and 1 for measured.
A pixel measurement that localises both coordinates on a silicon module is then represented as a
binary number 11000. For technical aspects that are based on the fact the the overwhelming majority
of measurements represent purely local coordinates, the digits of the binary number are flipped, and
the identification key is calculated as the transformed interger representation, yielding in the given
example:

int(0b00011) = 3

Given the identification through the integer key it is possible to check the measured parameters
contained by the LocalParameters class. Some examples of the usage of the LocalParameters class
will be shown in the following.

// retrieve the local parameters from the measurement

const Trk::LocalParameters& measPars = measurement->localParameters();

// check whether it measured the local Y coordinate

bool measLocY = measPars.contains(Trk::locY);

The argument given through the method signature of the contains(...) method is the the same
enumeration type as used for accessing the parameters from the track parameterisation, the so-
called ParamDefs. The ParamDefs are also used to define the parameter(s) to be put into the
LocalParameters class at construction level.

// created a defined parameters - it is a segment that defines x/phi

Trk::DefinedParameter measuredX(0.452, Trk::locX);

Trk::DefinedParameter measuredPhi(1.452, Trk::phi);

// create a vector of defined parameters

std::vector<Trk::DefinedParameter> defParameters;

defParameters.push_back(measuredX);

defParameters.push_back(measuredPhi);

// finally create the LocalParameters

Trk::LocalParameters segParameters(defParameters);

For the most common usecases there exist dedicated constructors for the convenience of the clients.
The LocalParameters class also provides the projection matrices that correspond to the measurement
mapping functions, which are in the ATLAS tracking EDM simply realised as projections matrices.
A static member of type ProjectionMatricesSet that holds the 31 possible matrices is therefore
registered to the LocalParameters. A residual calculation as given in Eq. 5 can then be calculated
as

// get the track parameters vector - always 5-dimensional

const HepVector& parameters = trackParameters->parameters();

// retrieve the local parameters from the measurement - n-dimensional (n <= 5)

const Trk::LocalParameters& measPars = measurement->localParameters();

14

// build the n-dimensional residuum vector

HepVector residuum = measPars - measPars.reductionMatrix()*parameters;

It is worth noticing that the last line hereby is only possible since the LocalParameters object extends
the HepVector and thus all operators are defined accordingly. The transposed measurement mapping
matrices HT

i are also accessible for the convenience of the user.

A.3 Segment Authors

The adapted Segment class now incorporates an authorship schema for later identification of the
algorithm used for the segment creation. The authorship is hereby registered by an enumeration
object; the current list of possible segment authors can be found below.

enum Author {

AuthorUnknown = 0,

MooMdtSegmentMakerTool = 1,

MooCscSegmentMakerTool = 2,

Muonboy = 3,

DCMathSegmentMaker = 4,

MDT_DHoughSegmentMakerTool = 5,

CSC_DHoughSegmentMakerTool = 6,

Csc2dSegmentMaker = 7,

Csc4dSegmentMaker = 8,

TRT_SegmentMaker = 9,

NumberOfAuthors = 10

};

References

[1] F. Akesson et al., The ATLAS Tracking Event Data Model, ATLAS Public Note, ATL-SOFT-
PUB-2006-004.

[2] Athena homepage, http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/ architecture.

[3] CLHEP homepage, http://cern.ch/clhep

[4] A. Salzburger, M. Wolter, S. Todorova, The ATLAS Reconstruction Geometry Description, ATLAS
Communication to be published, ATLAS-COM-SOFT-2007-009, 2007.

[5] ATLANTIS homepage, http://cern.ch/atlantis

[6] A. Salzburger, The ATLAS Extrapolation package,ATLAS Communication to be published,
ATLAS-COM-SOFT-2007-008, 2007.

[7] V. Boisvert et al, Final Report of the ATLAS Reconstruction Task Force, ATLAS Note, ATL-
SOFT-2003-010, 2003.

[8] ATLAS software CVS reporsitory, online CVSView, http://atlas-sw.cern.ch/cgi-bin/viewcvs-
atlas.cgi/offline/

