27 research outputs found

    Automation Proposal for the Intermediate Steps in the 16S FFPE Samples Analysis Pipeline

    Get PDF
    Cursos e Congresos, C-155[Abstract] In the day-to-day work of bioinformatics, the use of integrated software packages, which encompass a wide range of tools, enables the development of pipelines for omics data analysis. Within the various existing pipelines, we focus on the analysis of the 16S rRNA gene as it allows for the study of diversity and taxonomy of prokaryotic microorganisms such as Bacteria and Archaea. However, these pipelines often involve a sequence of multiple tools that require intermediate steps before further processing can proceed, as in the case between Cutadapt and DADA2. In fact, in a typical pipeline, the values for DADA2 input arguments ’trunc-len-f’ and ’trunc-len-r’ are extracted from the output of Cutadapt. The best approach for selecting optimal values (aka the trimming positions) is graphically visualizing Cutadapt output and manually selecting the most accurate trimming position length. Therefore, we propose the automation of this specific intermediate step between Cutadapt and DADA2 tools, by selecting values displayed in the graphs that meet the filtering criteria. This automation has been incorporated into a custom pipeline for the analysis of the microbiome in 16S paired-end samples from colorectal cancer patients, and could potentially serve as a standardization approach in these processesThe authors of this paper extend their sincere appreciation to the collaborative efforts and contributions of the meiGAbiome Group, aswell as the entire team of medical and anatomopathologists. Finally, we are deeply grateful to the patients whose selfless donations have made this and numerous other studies possibl

    Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: breast conditions.

    Get PDF
    The use of medical 3D printing has expanded dramatically for breast diseases. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides updated appropriateness criteria for breast 3D printing in various clinical scenarios. Evidence-based appropriateness criteria are provided for the following clinical scenarios: benign breast lesions and high-risk breast lesions, breast cancer, breast reconstruction, and breast radiation (treatment planning and radiation delivery)

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: Breast conditions

    Get PDF
    The use of medical 3D printing has expanded dramatically for breast diseases. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides updated appropriateness criteria for breast 3D printing in various clinical scenarios. Evidence-based appropriateness criteria are provided for the following clinical scenarios: benign breast lesions and high-risk breast lesions, breast cancer, breast reconstruction, and breast radiation (treatment planning and radiation delivery)

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Abstract Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.https://deepblue.lib.umich.edu/bitstream/2027.42/146524/1/41205_2018_Article_30.pd

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Megaproyectos urbanos y productivos. Impactos socio-territoriales

    Get PDF
    El desarrollo de megaproyectos productivos trae consigo oportunidades para el crecimiento económico, la generación de empleos y el desarrollo regional. No obstante, en la actualidad, los grandes temas como la expansión urbana, el desarrollo industrial, las cementeras, la minería, el uso intensivo del agua y demás recursos naturales, preocupan a las comunidades por los impactos generados y porque en lo general, no consideran la racionalidad y responsabilidad ambiental y social hacia el entorno. En este contexto son diversos los estudios científicos que, en el marco de la política de económica imperante, intentan posicionarse como alternativas a proyectos económicos que confrontan los intereses particulares y comunitarios y que afectan la salud humana y ambiental. Megaproyectos urbanos y productivos. Impactos socio-territoriales, reúne veinticinco textos académicos sobre las afectaciones que éstos emprendimientos tienen para la sociedad y el entorno. Los temas expuestos recogen experiencias en el desarrollo urbano, industrial, turístico, portuario y aeroportuario, entre otros. Así mismo se retoman temas como la ética, la dialéctica, la política y la economía y su relación en el emprendimiento de megaproyectos. La búsqueda de esquemas productivos racionales y responsables con el entorno, que reivindiquen el derecho de las comunidades a un medio ambiente sano, a la preservación del territorio y sus recursos y de las formas de vida tradicionales, son los referentes para la realización del presente libro. Como elemento central se concibe el territorio como contenedor de identidad y vida, siendo preocupación y tema de estudio de la comunidad académica, las organizaciones de la sociedad civil y las redes de activistas organizados.UAEM, CONACyT, se
    corecore