32 research outputs found

    A state-of-the-art review on international strategic alliances: do we really know what we are researching?

    Get PDF
    This review explores recent literature on international strategic alliances (ISAs). Management of alliances requires a better understanding of different dimensions and components of ISAs and of their role. This review provides a state-of-the-art understanding of the concept using content analysis of 85 ISA articles. There is limited research on the concept of ISA and the components that affect the alliances’ formation, post-formation and outcome. We found notable inconsistencies in the ISA literature on the concept. This highlights the need for further structuration of the concept and the need to provide characterisation that is more coherent. This review presents implications for the definition and future research avenues for the concept, especially regarding the theory, context and the scope of ISA research. Finally, this study provides a state-of-the-art discussion that proposes critical viewpoints for future development of the concept of ISAs, their influential components and their application in research and international management.info:eu-repo/semantics/acceptedVersio

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    AIMS/HYPOTHESIS: Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes.METHODS: Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals.RESULTS: Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed.CONCLUSIONS/INTERPRETATION: We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.DATA AVAILABILITY: The datasets analysed during the current study are included in this published article and its supplementary information files ( www.btk.fi/research/computational-biomedicine/1234-2 ) or are available from the Gene Expression Omnibus (GEO) repository (accession GSE30211).</div

    Umbilical cord blood DNA methylation in children who later develop type 1 diabetes

    Get PDF
    Aims/hypothesis Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes. Methods Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis. Results No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate Conclusions/interpretation Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.Peer reviewe

    Early fecal microbiota composition in children who later develop celiac disease and associated autoimmunity

    Get PDF
    Objectives: Several studies have reported that the intestinal microbiota composition of celiac disease (CD) patients differs from healthy individuals. The possible role of gut microbiota in the pathogenesis of the disease is, however, not known. Here, we aimed to assess the possible differences in early fecal microbiota composition between children that later developed CD and healthy controls matched for age, sex and HLA risk genotype.Materials and methods: We used 16S rRNA gene sequencing to examine the fecal microbiota of 27 children with high genetic risk of developing CD. Nine of these children developed the disease by the age of 4 years. Stool samples were collected at the age of 9 and 12 months, before any of the children had developed CD. The fecal microbiota composition of children who later developed the disease was compared with the microbiota of the children who did not have CD or associated autoantibodies at the age of 4 years. Delivery mode, early nutrition, and use of antibiotics were taken into account in the analyses.Results: No statistically significant differences in the fecal microbiota composition were found between children who later developed CD (n = 9) and the control children without disease or associated autoantibodies (n = 18).Conclusions: Based on our results, the fecal microbiota composition at the age of 9 and 12 months is not associated with the development of CD. Our results, however, do not exclude the possibility of duodenal microbiota changes or a later microbiota-related trigger for the disease.</p

    Umbilical cord blood DNA methylation in children who later develop type 1 diabetes

    Get PDF
    Aims/hypothesis: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes.Methods: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis.Results: No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate Conclusions/interpretation: Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.</p
    corecore