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Abstract
Aims/hypothesis Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood
collected from young children. Our aim was to determine whether perinatal DNAmethylation is associated with later progression
to type 1 diabetes.
Methods Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples
collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1
diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79)
who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related
to the pregnancy and the mother were included in the analysis.
Results No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false
discovery rate <0.05.
Conclusions/interpretation Based on our results, differences between children who progress to type 1 diabetes and those who
remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the
possibility that such differences would be found in a larger dataset.

Jorma Ilonen, Mikael Knip, Riikka J. Lund, Matej Orešič and Riitta
Veijola contributed equally to this study.
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Abbreviations
DAISY Diabetes Autoimmunity Study in the Young
DIPP Diabetes Prediction and Prevention Study
FDR False discovery rate
GADA Glutamic acid decarboxylase antibody
IA-2A Insulinoma-associated protein 2 antibody
IAA Insulin autoantibody
RRBS Reduced representation bisulphite sequencing

Introduction

DNAmethylation at cytosine residues is one of themost impor-
tant epigenetic mechanisms regulating gene expression. The
modification converts cytosine to 5-methylcytosine, usually in
the context of CpG dinucleotides. Differential methylation at
the promoter or other regulatory elements affects gene expres-
sion in health and diseases [1]. Most studies on the association
between type 1 diabetes andDNAmethylation have focused on
differences between case and control participants at the time of
diagnosis or later. Themost extensive study on the topic includ-
ed immune effector cells from 52 monozygotic twin pairs who
were discordant for type 1 diabetes [2]. Thousands of CpG sites
were found to be differentially variable between affected partic-
ipants and their healthy co-twins. An earlier study [3] included
a small set of samples from prediabetic individuals (n = 7) to
confirm findings from already diagnosed participants. A recent
report from the Diabetes Autoimmunity Study in the Young
(DAISY) on prospective epigenomics of type 1 diabetes also

included samples collected before seroconversion of the case
participants to islet autoantibody positivity [4].

A peak in the appearance of islet autoimmunity occurs at an
early age, between one and two years [5]. We therefore
hypothesised that progression to type 1 diabetes during child-
hood may already be reflected in the epigenome at birth. Two
previous studies have examined umbilical cord blood samples
from neonates who later progressed to type 1 diabetes [2, 4].
However, in both studies, the neonatal samples were only
used to confirm the direction of change in differentially meth-
ylated regions discovered at later time points. They did not
publish umbilical cord blood DNA methylation measure-
ments outside the candidate regions.

In this study we used the reduced representation bisulphite
sequencing (RRBS) method to analyse umbilical cord blood
DNA methylation associated with later progression to type 1
diabetes in a prospective cohort from the Finnish Type 1
Diabetes Prediction and Prevention (DIPP) Study. The aim
was to detect DNA methylation patterns associated with later
progression to type 1 diabetes. Such findings would be
valuable for a better understanding of early mechanisms
underlying the progression to type 1 diabetes related
autoimmunity.

Methods

The electronic supplementary material (ESM) provides
further information regarding the power analysis (ESM
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Table 1 Characteristics of the case and control participants

Variable Cases (n = 43) Controls (n = 79) Number of missing values

Child

Age at diagnosis of type 1 diabetes (n = 34) (years); median (range) 8.7 (1.6–18.8) NA –

Age at seroconversion (years); median (range) 2.5 (0.5–10.7) NA –

First biochemical autoantibody (n) –

IAA 14 NA

GADA 13 NA

IA-2A 3 NA

Multiple/unknown 13 NA

HLA risk (n) 0

High 21 24

Moderate 19 27

Neutral/slightly elevated 3 28

Sex (n) 0

Female 17 25

Male 26 54

Birthweight (g); median (range) 3750 (2310–4600) 3500 (1910–4860) 0

Apgar points at 1 min (n) 1

Normal (8–10) 37 68

Low (4–7) 5 11

Mother

Maternal age (years); median (range) 29.8 (21.3–39.6) 30.7 (21.3–45.8) 0

Maternal height (cm); median (range) 168 (152–179) 165 (150–179) 0

Maternal BMI (before this pregnancy) (kg/m2); median (range) 22.7 (17.2–41.7) 23.2 (18.0–35.5) 2

Number of earlier miscarriages (n) 0

None 34 64

One or more 9 15

Pregnancy

Gestational weight gain (mother) (kg); median (range) 13 (0–22) 14 (0–28) 3

Maternal insulin treatment for diabetes (gestational or other) (n) 0

Yes 4 1

No 39 78

Maternal smoking during pregnancy (n) 3

Yes 3 5

No 39 72

Delivery

Mode of delivery (n) 0

Caesarean section 3 13

Vaginal 40 66

Labour induction (n) 0

Yes 7 14

No 36 65

Usage of epidural anaesthetic during delivery phase I (n) 0

Yes 18 40

No 25 39

Technical

Year of birth; median (range) 2001 (1995–2006) 1999 (1995–2006) 0

Month of birth (n) 0

Dec–Feb 11 20

Mar–May 12 23
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Methods and ESM Fig. 1) and a more detailed description of
the HLA risk class determination, sample collection, islet
autoantibody measurement, RRBS, bisulphite pyrosequenc-
ing protocols and data analysis (ESM Methods and ESM
Tables 1–4).

Study design Case participants (n = 43) who were diag-
nosed with type 1 diabetes during the DIPP Study follow-
up or became persistently positive for at least two
biochemical islet autoantibodies (in at least two consecu-
tive serum samples) were compared with control partici-
pants (n = 79) who remained autoantibody-negative
throughout the DIPP Study follow-up, i.e. up to 15 years
of age or until their decision to discontinue participation
in the study. Data until the end of year 2018 were includ-
ed. Clinical data such as maternal insulin-treated diabetes,
gestational weight gain and the child’s birthweight were
used to adjust for potential confounding effects. The char-
acteristics of the case and control participants are
described in Table 1.

Umbilical cord blood samples were collected from
newborn children born in Turku University Hospital between
1995 and 2006. After informed consent, HLA DR/DQ
genotyping was performed from umbilical cord blood to iden-
tify children at increased risk of developing type 1 diabetes.
Eligible children were invited to participate in the DIPP Study
follow-up, during which islet autoantibodies were measured
1–4 times per year using specific radio-binding assays. The
islet autoantibodies included IAA (insulin autoantibody), IA-
2A (insulinoma-associated protein 2 antibody), GADA
(glutamic acid decarboxylase antibody) and ZnT8A (zinc
transporter-8 antibody). Screening for classical islet cell anti-
bodies was used as the only autoantibody screening method
for children in the DIPP Study born before 2003, and, if

positive, all other autoantibodies were measured from all
previous and future samples from the child.

Power analysis The power analysis was performed on simu-
lated bisulphite sequencing data using a tool developed by Lea
et al [6] (see ESM Methods for details).

Sample collection and HLA risk class determinationUmbilical
cord blood was collected immediately after birth in 3 ml K3-
EDTA tubes in the delivery room at Turku University
Hospital. HLA DR/DQ genotypes were determined from the
DNA in the dried blood spots using assays that were designed
to densely probe the genomic regions associated with type 1
diabetes. The genotyping was started from major DQB1
alleles (see ESM Methods for details).

Islet autoantibodymeasurement Islet autoantibodies in serum
samples were measured using specific radio-binding assays
(see ESM Methods for details).

Sample inclusion criteria Of 200 cord blood samples, 20 were
excluded for low (<97%) bisulphite conversion efficiency,
two were excluded due to missing clinical data, and five were
rejected due to an inadequate amount or quality of DNA.
Samples from individuals with transient islet antibodies (n =
47) or persistent positivity for only one islet antibody (n = 4)
were excluded from the study (see ESMMethods for details).
This resulted in a total of 122 samples for use in the analysis.

RRBS The library preparation steps were adapted from the
RRBS protocol described by Boyle et al [7]. An Illumina
HiSeq 2500 instrument (San Diego, CA, USA) was used for
paired-end sequencing (2 × 100 bp) of the DNA libraries. We
applied the data analysis workflow that has been described

Table 1 (continued)

Variable Cases (n = 43) Controls (n = 79) Number of missing values

Jun–Aug 11 18

Sep–Nov 9 18

Library preparation batch (n) 0

1A 5 11

1B 2 2

1C 6 9

2A 6 15

2B 11 11

3A 4 8

3B 9 23

Data are n or median (range)

All the covariates listed here were included as explanatory variables in the differential methylation analysis, except for age at diagnosis, age at
seroconversion and first-appearing autoantibody, which are relevant only for the case group. The inclusion criteria are specified in ESM Table 1
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previously in more detail [8]. Briefly, a generalised mixed-
effects model implemented in the R package PQLseq [9]
was fitted separately for read counts at each high-coverage
CpG site on autosomal chromosomes. A coverage of 10 was
the minimum required in at least one third of the samples in
both groups, but the median coverage was 28. The overall
coverage and proportion of missing values are shown in
ESM Figs 2 and 3. The covariates listed in Table 1 were
modelled as fixed effects, and the genetic similarity between
individuals was modelled as a random effect. The reasons for
inclusion/exclusion of covariates are given in ESM Table 1.
TheWald test p values computed within PQLseq were spatial-
ly adjusted using a weighted Z test implemented in the
RADMeth package [10]. As the spatially adjusted p values
were found to be inflated, the false discovery rate (FDR)
was estimated empirically through a permutation analysis [8]
(see ESM Methods for details).

Alternative differential methylation analysis with a reduced
number of covariates The analysis was repeated with a
reduced number of covariates such that only necessary covar-
iates were included in the generalised mixed-effects model.
These were class (case/control), HLA risk class, sex, and
PC1 and PC2 (see ESM Methods for details).

Targeted bisulphite pyrosequencing Targets for technical
validation by pyrosequencing were selected based on statisti-
cal significance in the RRBS analysis. Regions that were
differentially methylated according to the DAISY study [4]
and showed the same direction of difference in this study were
also selected. The genomic regions of interest were amplified
by 45 rounds of PCR. Bisulphite pyrosequencing was

performed using the PyroMark Q24 system (Qiagen, Hilden,
Germany) on 58 samples that were a subset of the samples
studied with RRBS. A linear regression analysis (ANOVA)was
performed for arcsin-transformed DNAmethylation proportions.
The explanatory variables were the same as those included in
the RRBS data analysis (see ESM Methods for details).

Ethical aspects All participating families gave an informed
consent for the genetic HLA screening from umbilical cord
blood and for the follow-up. The study was originally
approved by the Ethics Committee of the Hospital District of
Southwest Finland, followed by the Ethics Committee of the
Hospital District of Northern Ostrobothnia. The study follow-
ed the principals of the Helsinki II declaration.

Results

Altogether, 2,568,146 CpG sites fulfilled the quality and cover-
age criteria and were included in the differential methylation
analysis. These CpG sites covered 23,174 unique enhancer
regions out of 52,563 double-elite human enhancers in the
GeneHancer database, and included genomic regions that were
within 2 kb of 57 risk loci for type 1 diabetes [11, 12].

None of the covered CpG sites were differentially methyl-
ated between the case and control participants as individual
CpG sites (Benjamini–Hochberg-corrected p value <0.05
before spatial adjustment). After spatial adjustment, two adja-
cent CpG sites (chr11:400288 and chr11:400295, GRCh37
genome assembly) on an intron of gene Plakophilin-3
(PKP3) showed weak evidence of hypomethylation in the
case participants (empirically estimated FDR <0.05, ESM
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Fig. 1 Methylation proportions at Chr11:400295 quantified using two
different technologies (RRBS and targeted pyrosequencing), visualised
as boxplots. (a) A CpG site at Chr11:400295 on an intron of PKP3
showed weak evidence of differential methylation between case and
control participants (not as an individual cytosine but as part of a candi-
date differentially methylated region), as measured by RRBS. (b)

Validation by targeted pyrosequencing showed that the difference was
not significant. The p values shown below each plot are nominal (neither
spatially adjusted nor multiple testing-corrected). The midline of each
boxplot is drawn at the median, boxes range from the 1st to the 3rd
quartile, and whiskers extend to the most extreme values
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Table 2). However, technical replication by targeted pyrose-
quencing showed that the difference was not significant (Fig.
1 and ESM Fig. 4).

The strong inflation of spatially adjusted p values was
an important observation in these data, as described previ-
ously [8]. Before the inflation was discovered, 28 genomic
regions were considered differentially methylated between
cases and controls based on Benjamini–Hochberg-
corrected spatially adjusted p values (<0.05). We carried
out pyrosequencing to validate five selected targets techni-
cally, but the results did not indicate differential methyla-
tion between the groups (ESM Table 3). Empirical FDR
control of the RRBS results further confirmed that the
differences were indeed not significant.

In the DAISY study, observations in umbilical cord blood
validated the direction of difference at genomic regions that
were differentially methylated at later time points [4]. Our
results did not validate the results of the DAISY study (ESM
Table 4). However, methylation differences at these candidate
regions were highly concordant between RRBS and pyrose-
quencing (ESM Table 4). Furthermore, successful technical
validation of a sex-associated region confirmed that concor-
dant results could be obtained by these two technologies
(ESM Fig. 5) [8].

Discussion

Distinct DNA methylation patterns have recently been
observed to precede type 1 diabetes in whole blood collect-
ed from very young children [4]. We tested the possible
presence of such differences at the time of birth in a collec-
tion of umbilical cord blood samples. Compared with previ-
ous studies, our data covered a substantially larger number
of CpG sites. Based on our results, differences between
children who progress to type 1 diabetes and those who
remain healthy throughout childhood are not yet present
in the perinatal DNA methylome. However, we cannot
exclude the possibility that such differences could be found
in a larger dataset. The coverage of RRBS and the statistical
power to detect small (e.g. 1%) differences with these
sample numbers (see ESM Methods for details) are limited
to relatively CpG-rich regions.

This study was limited to an overall comparison between
healthy controls and a heterogeneous group of case participants
with different first-appearing autoantibodies, ages at serocon-
version (range 0.5–11.6 years) and ages at diagnosis (range
1.6–18.8 years), who may represent different disease subtypes,
the existence of which has been suggested by several studies
during the past decade [13]. For example, the group of children
with IAA as the first-appearing islet autoantibody is
characterised by a different HLA DR/DQ profile and age at
seroconversion compared with children with GADA as the

first-appearing autoantibody [5]. Determining the epigenetic
profile of newborn infants representing a potential disease
subtype, for example children who develop type 1 diabetes at
very young age, would be an interesting goal for future studies.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.1007/
s00125-022-05726-1.
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