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Progression to clinical type 1 diabetes is monitored through the appearance of islet 39 

autoantibodies against pancreatic β-cell antigens, and most children with two or more 40 
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autoantibodies progress to disease (1). However, autoantibodies indicate already active islet 41 

autoimmunity, and by that time, loss of immune tolerance may have reached a point of no 42 

return. Thus, there is an urgent need for biomarkers that would predict the disease before the 43 

appearance of islet autoantibodies and provide a longer window for intervention. New 44 

biomarkers might help identify optimal sets of subjects for clinical trials or a subgroup of patients 45 

who may more likely benefit from a given therapy.  46 

MicroRNAs (miRNAs) secreted in extracellular vesicles have been detected in blood and may 47 

have biomarker potential (2). Several studies have shown the usefulness of miRNAs as 48 

biomarkers for many diseases (reviewed in (3)). Aberrant miRNA expression has been 49 

observed in sera of type 1 diabetes patients (reviewed in (4)). However, most miRNA studies 50 

have analyzed samples at or after the onset of clinical type 1 diabetes.  51 

Here we analyzed whether we can detect changes in miRNA levels before and during islet 52 

autoimmunity in whole blood samples from children with HLA-conferred risk of type 1 diabetes 53 

participating in the Type 1 Diabetes Prediction and Prevention (DIPP) study (5). Children from 54 

the DIPP study with high HLA-conferred risk were followed up, and whole blood samples were 55 

collected at multiple time points. Case-control matching was based on HLA-DQB1 genotype, 56 

date and place of birth, and sex, similarly as described earlier (5). To study genome-wide 57 

miRNA profiles before the clinical presentation of type 1 diabetes, we first performed miRNA-58 

sequencing (miRNA-seq) on 87 longitudinal samples collected from four multiple autoantibody-59 

positive cases and their matched autoantibody negative controls (Fig. 1A: miRNA-seq 60 

discovery cohort) using the Illumina HiSeq 2500 platform. A linear mixed-effects model for 61 

each miRNA was used to test differential expression between cases and controls. The most 62 

significantly upregulated miRNA in cases was hsa-miR-6868-3p (p <0.001), which has not been 63 

earlier associated with type 1 diabetes. Interestingly, hsa-miR-6868-3p was upregulated already 64 

before seroconversion (Fig. 1B). We confirmed the finding (p <0.001) on these and ten 65 
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additional case-control pairs using miRNA-seq of two time-points before seroconversion (Fig. 66 

1A: miRNA-seq validation cohort; Fig. 1C).  67 

We further confirmed the miRNA upregulation by TaqMan qRT-PCR assay in samples collected 68 

from 29 case-control pairs, of which 14 were included in the miRNA-seq analysis (Fig. 1A: 69 

TaqMan validation). A strong correlation (r=0.75) was observed between the sequencing and 70 

TaqMan results for hsa-miR-6868-3p expression. Convincingly, the TaqMan data showed 71 

higher hsa-miR-6868-3p expression in cases than controls (p <0.001) across the time points 72 

(Fig. 1D), recapitulating the miRNA-seq result. 73 

Given the early upregulation of hsa-miR-6868-3p, we tested whether the miRNA can classify the 74 

29 cases from controls already before seroconversion, using the average expression before 75 

seroconversion for a given child. The ∆Ct expression values were adjusted for individual HLA 76 

type and TaqMan plates using a linear model. The area under the receiver operating 77 

characteristic curve (AUROC) was 0.76 (Fig. 1E), suggesting that the miRNA may indeed 78 

potentially serve as a screening biomarker for the stratification of children at increased genetic 79 

risk for type 1 diabetes.  80 

Besides blood, breast and brain, the miRNA is expressed in the pancreas (Fig. 1F), suggesting 81 

an interesting possibility that its upregulation in blood samples of case children may potentially 82 

originate from the pancreas and circulate through blood under inflammatory conditions. It is 83 

important to note that this miRNA may also come from blood lymphocytes, given its expression 84 

in these cells (Fig. 1G). 85 

The ROC analysis implied that hsa-miR-6868-3p may serve as a screening biomarker for the 86 

stratification of children at risk of islet autoimmunity. However, the small cohort size of 58 study 87 

subjects is a limitation of the study, and the finding should be validated in whole-blood samples 88 

of an independent, preferably larger cohort. For a screening biomarker, high sensitivity is 89 

preferred over high specificity (i.e., false negatives are of more concern than false positives). 90 
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The current model reaches a higher sensitivity of 0.86 at the specificity of 0.66. It remains to be 91 

seen whether combining hsa-miR-6868-3p with other miRNAs or mRNAs will improve the 92 

performance of the predictive model. It will also be interesting to determine whether the miRNA 93 

expression correlates with the time from seroconversion to clinical disease. 94 
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Figure Legend 154 

 155 

Figure 1. hsa-miR-6868-3p as early marker for type 1 diabetes   156 
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(A) The samples from the miRNA-seq discovery cohort (top left), the miRNA-seq validation cohort 157 

(bottom left), and the TaqMan validation cohort (right). Each line is an individual, and each dot is 158 

a PAXgene sample. (B) The line plots showing the expression profiles of hsa-miR-6868-3p for 159 

the four case-control pairs of the discovery cohort. The plots are seroconversion centered. CPM 160 

stands for counts per million. (C) Line plots showing the average longitudinal case-control profiles 161 

of hsa-miR-6868-3p in the validation cohort. Each red and blue dot shows a case or a control 162 

sample, respectively. The dashed lines show average expression, and the grey area shows a 163 

95% confidence interval. (D) TaqMan expression of hsa-miR-6868-3p over time in 29 case-control 164 

pairs. The p value shown at the top was obtained from the linear mixed-effects model. (E) 165 

Receiver operating characteristic (ROC) analysis showing the performance of hsa-miR-6868-3p 166 

in differentiating the DIPP cases from controls in samples before the appearance of islet 167 

autoantibodies. The delta Ct values were adjusted using linear regression with HLA-type 168 

(DR3/DR4, DR3/DR3, DR4/DR4, DR3/other, DR4/other) and TaqMan plate as explanatory 169 

variables. The resulting residuals were used to normalize the possible effects of HLA and plate. 170 

True positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) as 171 

predicted by the model are shown on the plot. (F) The expression profile of hsa-miR-6868-3p 172 

across different tissues. The data was taken from miRmine database 173 

(https://guanfiles.dcmb.med.umich.edu/mirmine/index.html). (G) Expression of hsa-miR-6868-3p 174 

in blood cells of healthy donors (n=3). Each dot represents an individual. 175 
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