75 research outputs found

    Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature

    Full text link
    [EN] Slim-floor beams are a novel typology of steel beams where the steel profile is fully embedded within the concrete floor depth. While the use of this system is increasing fast in the construction practice, the available investigations on its fire performance are still scarce. This paper focuses on analysing the fire behaviour of slim floor beams combined with hollow core slabs as flooring system. Two configurations are studied, namely Integrated Floor Beam (IFB) and Shallow Floor Beam (SFB). A finite element model is developed and validated by comparison with experimental results available in the literature as well as with thermal tests carried out by the authors. Subsequently, parametric studies are conducted with the aim of providing practical design recommendations. The influence of the composite beam configuration, concrete type, longitudinal reinforcement and steel plate thickness is studied. The conclusions drawn in this paper suggest that the SFB configuration may provide a significant enhancement in terms of fire resistance compared to IFB, provided that the appropriate combination of the parameters studied is used.The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds.Albero Gabarda, V.; Espinós Capilla, A.; Serra Mercé, E.; Romero, ML.; Hospitaler Pérez, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures. 180:561-573. https://doi.org/10.1016/j.engstruct.2018.11.061S56157318

    Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners

    Full text link
    Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners is presented in this paper. The behaviour of the columns is examined by the use of the finite element software LUSAS. Results from nonlinear finite element analyses are compared with those from corresponding experimental tests which uncover the reasonable accuracy of the modelling. Novel steel stiffeners are used in the CFSC stub columns of this study. The columns are extensively developed considering three different special arrangements of the steel stiffeners with various number, spacing, and widths of the stiffeners. The main variables are: (1) arrangement of the steel stiffeners (C1, C2, and C3); (2) number of the steel stiffeners (2 and 3); (3) spacing of the steel stiffeners (50 mm and 100 mm); (4) width of the steel stiffeners (50 mm, 75 mm, and 100 mm); (5) steel thickness (2 mm, 2.5 mm, and 3 mm); (6) concrete compressive strength (30 MPa, 40 MPa, and 50.1 MPa); (7) steel yield stress ( 234.3 MPa, 350 MPa, and 450 MPa). Effects of the variables on the behaviour of the columns are assessed. Failure modes of the columns are also illustrated. It is concluded that the variables have considerable effects on the behaviour of the columns. Moreover, ultimate load capacities of the columns are predicted by the design code EC4, suggested equation of other researchers, and proposed equation of the authors of this paper. The obtained ultimate load capacities from the analyses are compared with the predicted values. It concludes that EC4 gives more conservative predictions than the equations

    Nonlinear analysis of concrete-filled steel SHS and RHS columns

    No full text
    This paper presents an accurate nonlinear finite element model for the behaviour and design of axially loaded concrete-filled square hollow section (SHS) and rectangular hollow section (RHS) steel tube columns. The nonlinear material models for confined concrete and steel tubes were carefully modeled in the finite element analysis. The column strengths and load-axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled SHS and RHS steel tube columns. The study was conducted over a wide range of concrete cube strengths ranged from 30 to 110 MPa. The overall depth of the steel tube-to-plate thickness ratio ranged from 10 to 40 covering compact SHS and RHS steel tube sections. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results obtained from the parametric study, it is found that the design strengths calculated using the American Specifications and Australian Standards are conservative, while the design strengths calculated using the European Code are accurate, except for the concrete-filled RHS compact steel tube columns having the overall depth of the steel tube-to-plate thickness ratio of 40. © 2006 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Performance of shear connection in composite beams with profiled steel sheeting

    No full text
    This paper describes the structural performance of shear connection in composite beams with profiled steel sheeting. An accurate and efficient nonlinear finite element model was developed to study the behaviour of headed stud shear connectors welded through-deck. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The material nonlinearities of concrete, headed stud, profiled steel sheeting, reinforcement and steel beam were included in the finite element model. The capacity of shear connection, load-slip behaviour of the headed stud, and failure modes were predicted. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to study the effects on the capacity and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of the headed stud, as well as the strength of concrete. The capacities of shear connection obtained from the finite element analysis were compared with the design strengths calculated using the American Specification, British Standard and European Code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design rules specified in the American and British specifications overestimated the capacity of shear connection, but the design rules specified in the European Code were generally conservative. © 2005 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Buckling analysis of cold-formed steel lipped angle columns

    No full text
    This paper describes the buckling behavior of cold-formed steel equally lipped angle columns. The initial local imperfections, residual stresses, and corner material properties of the cold-formed steel angles have been measured experimentally and reported in this paper. An accurate finite element model was developed to carry out the buckling analysis. Both initial local and overall geometric imperfections have been incorporated in the model. The effect of residual stresses on the buckling behavior was investigated. The material nonlinearities of flat and corner portions of the angle sections were considered in the analysis. The finite element analysis was performed on equally lipped angles compressed between fixed ends for different column lengths, and column curves were obtained. The nonlinear finite element model was verified against recent experimental results. An extensive parametric study was carried out using the finite element model to study the effects of cross section geometries on the strength and behavior of lipped angle columns. The column strengths predicted by the finite element model were compared with the design strengths calculated using the North American Specification and Australian/New Zealand Standard for cold-formed steel structures. In addition, the results obtained from the finite element model were also compared with the design strengths obtained from proposed design rules. It is shown that the proposed design rules accurately predicted the column strengths for non-slender lipped angles and were quite conservative for slender lipped angles. © ASCE.link_to_subscribed_fulltex
    corecore