1,300 research outputs found
Semantic categorisation of a word supports its phonological integrity in verbal short-term memory
In three immediate serial recall (ISR) experiments we tested the hypothesis that interactive processing between semantics and phonology supports phonological coherence in verbal short-term memory (STM). Participants categorised spoken words in six-item lists as they were presented, according to their semantic or phonological properties, then repeated the items in presentation order (Experiment 1). Despite matched categorisation performance between conditions, semantically-categorised words were correctly recalled more often than phonologically-categorised words. This accuracy advantage in the semantic condition was accompanied by fewer phoneme recombination errors. Comparisons with a no- categorisation ISR baseline (Experiment 2) indicated that, although categorisations were disruptive overall, recombination errors were specifically rarer following semantic cate- gorisation. Experiment 3 replicated the key findings from Experiment 1 and also revealed fewer phonologically-related errors following semantic categorisation compared to a per- ceptual categorisation of high or low pitch. Therefore, augmented activation of semantic representations stabilises the phonological traces of words within verbal short-term memory, in line with the ââsemantic bindingâ hypothesis
Spatial Variability of Shortwave Irradiance for Snowmelt in Forests
The spatial variation of melt energy can influence snow cover depletion rates and in turn be influenced by the spatial variability of shortwave irradiance to snow. The spatial variability of shortwave irradiance during melt under uniform and discontinuous evergreen canopies at a U. S. Rocky Mountains site was measured, analyzed, and then compared to observations from mountain and boreal forests in Canada. All observations used arrays of pyranometers randomly spaced under evergreen canopies of varying structure and latitude. The spatial variability of irradiance for both overcast and clear conditions declined dramatically, as the sample averaging interval increased from minutes to 1 day. At daily averaging intervals, there was little influence of cloudiness on the variability of subcanopy irradiance; instead, it was dominated by stand structure. The spatial variability of irradiance on daily intervals was higher for the discontinuous canopies, but it did not scale reliably with canopy sky view. The spatial variation in irradiance resulted in a coefficient of variation of melt energy of 0.23 for the set of U. S. and Canadian stands. This variability in melt energy smoothed the snow-covered area depletion curve in a distributed melt simulation, thereby lengthening the duration of melt by 20%. This is consistent with observed natural snow cover depletion curves and shows that variations in melt energy and snow accumulation can influence snow-covered area depletion under forest canopies
The t W- Mode of Single Top Production
The t W- mode of single top production is proposed as an important means to
study the weak interactions of the top quark. While the rate of this mode is
most likely too small to be observed at Run II of the Fermilab Tevatron, it is
expected to be considerably larger at the CERN LHC. In this article the
inclusive t W- rate is computed, including O(1 / log (m_t^2 / m_b^2))
corrections, and when combined with detailed Monte Carlo simulations including
the top and W decay products, indicate that the t W- single top process may be
extracted from the considerable t tbar and W+ W- j backgrounds at low
luminosity runs of the LHC.Comment: 16 pages, 4 figure
Maverick dark matter at colliders
Assuming that dark matter is a weakly interacting massive particle (WIMP)
species X produced in the early Universe as a cold thermal relic, we study the
collider signal of pp or ppbar -> XXbar + jets and its distinguishability from
standard-model background processes associated with jets and missing energy. We
assume that the WIMP is the sole particle related to dark matter within reach
of the LHC--a "maverick" particle--and that it couples to quarks through a
higher dimensional contact interaction. We simulate the WIMP final-state signal
XXbar + jet and dominant standard-model (SM) background processes and find that
the dark-matter production process results in higher energies for the colored
final state partons than do the standard-model background processes, resulting
in more QCD radiation and a higher jet multiplicity. As a consequence, the
detectable signature of maverick dark matter is an excess over standard-model
expectations of events consisting of large missing transverse energy, together
with large leading jet transverse momentum and scalar sum of the transverse
momenta of the jets. Existing Tevatron data and forthcoming LHC data can
constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains
Unusual raptor nests around the world
From surveys in many countries, we report using unusual nesting materials (e.g., paper money, rags, metal, antlers, and large bones) and unusual nesting situations. For example, we documented nests of Steppe Eagles [Aquila nipalensis] and Upland Buzzards [Buteo hemilasius] on the ground beside well-traveled roads, Saker Falcon [Falco cherrug] eyries in attics and a cistern, and Osprey [Pandian haliaetus] nests on the masts of boats and on a suspended automobile. Other records include a Golden Eagle [A. chrysaelos] nest 7.0 m in height, believed to be the tallest nest ever described, and, for the same species, we report nesting in rudimentary, nests. Some nest sites are within a Few meters of known predators or competitors. These unusual observations may be important in revealing the plasticity of a species' behavioral repertoire
Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours.
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies
Defining and averting syndemic pathways in aquaculture: a major global food sector
Aquaculture now provides half of all aquatic protein consumed globallyâwith most current and future production occurring in low- and middle-income countries (LMICs). Concerns over the availability and application of effective policies to deliver safe and sustainable future supply have the potential to hamper further development of the sector. Creating healthy systems must extend beyond the simple exclusion of disease agents to tackle the host, environmental, and human drivers of poor outcomes and build new policies that incorporate these broader drivers. Syndemic theory provides a potential framework for operationalizing this One Health approach.</jats:p
Defining and averting syndemic pathways in aquaculture: a major global food sector
Aquaculture now provides half of all aquatic protein consumed globallyâwith most current and future production occurring in low- and middle-income countries (LMICs). Concerns over the availability and application of effective policies to deliver safe and sustainable future supply have the potential to hamper further development of the sector. Creating healthy systems must extend beyond the simple exclusion of disease agents to tackle the host, environmental, and human drivers of poor outcomes and build new policies that incorporate these broader drivers. Syndemic theory provides a potential framework for operationalizing this One Health approach
Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (pâ=â2.62Ă10â9â1.01Ă10â12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (ORâ=â1.28, 95% confidence interval: 1.06â1.55, pâ=â8.9Ă10â3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR)â=â5.78, pâ=â1.4Ă10â88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions
- âŠ