Assuming that dark matter is a weakly interacting massive particle (WIMP)
species X produced in the early Universe as a cold thermal relic, we study the
collider signal of pp or ppbar -> XXbar + jets and its distinguishability from
standard-model background processes associated with jets and missing energy. We
assume that the WIMP is the sole particle related to dark matter within reach
of the LHC--a "maverick" particle--and that it couples to quarks through a
higher dimensional contact interaction. We simulate the WIMP final-state signal
XXbar + jet and dominant standard-model (SM) background processes and find that
the dark-matter production process results in higher energies for the colored
final state partons than do the standard-model background processes, resulting
in more QCD radiation and a higher jet multiplicity. As a consequence, the
detectable signature of maverick dark matter is an excess over standard-model
expectations of events consisting of large missing transverse energy, together
with large leading jet transverse momentum and scalar sum of the transverse
momenta of the jets. Existing Tevatron data and forthcoming LHC data can
constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure