1,009 research outputs found

    Srs2 Disassembles Rad51 Filaments by a Protein-Protein Interaction Triggering ATP Turnover and Dissociation of Rad51 from DNA

    Get PDF
    Rad51 is a DNA recombinase functioning in the repair of DNA double-strand breaks and the generation of genetic diversity by homologous recombination (HR). In the presence of ATP, Rad51 self-assembles into an extended polymer on single-stranded DNA to catalyze strand exchange. Inappropriate HR causes genomic instability, and it is normally prevented by remodeling enzymes that antagonize the activities of Rad51 nucleoprotein filaments. In yeast, the Srs2 helicase/translocase suppresses HR by clearing Rad51 polymers from single-stranded DNA. We have examined the mechanism of disassembly of Rad51 nucleoprotein filaments by Srs2 and find that a physical interaction between Rad51 and the C-terminal region of Srs2 triggers ATP hydrolysis within the Rad51 filament, causing Rad51 to dissociate from DNA. This allosteric mechanism explains the biological specialization of Srs2 as a DNA motor protein that antagonizes HR

    Detection and Mapping of Quantitative Trait Loci that Determine Responsiveness

    Get PDF
    Exposure to 70% N2O evokes a robust antinociceptive effect in C57BL/6 (B6) but not in DBA/2 (D2) inbred mice. This study was conducted to identify quantitative trait loci (QTL) in the mouse genome that might determine responsiveness to N2O. Offspring from the F2 generation bred from B6 and D2 progenitors exhibited a broad range of responsiveness to N2O antinociception as determined by the acetic acid-induced abdominal constriction test. QTL analysis was then used to dissect this continuous trait distribution into component loci, and to map them to broad chromosomal regions. To this end, 24 spleens were collected from each of the following four groups: male and female F2 mice responding to 70% N2O in oxygen with 100% response (high-responders); and male and female F2 mice responding with 0% response (low-responders). Genomic DNA was extracted from the spleens and genotyped with simple sequence length polymorphism MapPairs markers. Findings were combined with findings from the earlier QTL analysis from BXD recombinant inbred mice [Brain Res 725 (1996) 23]. Combined results revealed two significant QTL that influence responsiveness to nitrous oxide on proximal chromosome 2 and distal chromosome 5, and one suggestive QTL on midchromosome 18. The chromosome 2 QTL was evident only in males. A significant interaction was found between a locus on chromosome 6 and another on chromosome 13 with a substantial effect on N2O antinociception

    Le couplage phosphore-phosphore dans l'adenosine di- et triphosphate

    Get PDF
    AbstractThe pH dependence of spin-spin coupling constants JP-O-P of ADP and ATP has been determined from the phosphorus NMR spectra at 0°. The variation curves have been interpreted as titration curves. These give different pK values. Comparison with the tripolyphosphate shows the existence of triphosphate chain structural deformation in the nucleotides

    Day of Archaeology 2011–2017: Global Community, Public Engagement, and Digital Practice.

    Get PDF
    The Day of Archaeology (http://www.dayofarchaeology.com) was a volunteer-led international archaeological blogging event that ran from 2011 to 2017. The project asked people who define themselves as archaeologists to submit one or more blog posts about their working day on a chosen day in June or July. This article explores the history of the Day of Archaeology project and the practicalities of running a large-scale collaborative blogging project, before examining some of the topics covered in the posts. An assessment of the impact of the project follows. Overall, we hope in this work to answer some of the basic questions regarding this type of collaborative, online, global engagement – what we did, who we reached, what they talked about – and also to provide some insights for any other similar initiatives that may follow us in the future

    Antibody signatures in patients with histopathologically defined multiple sclerosis patterns

    Get PDF
    Early active multiple sclerosis (MS) lesions can be classified histologically into three main immunopathological patterns of demyelination (patterns I-III), which suggest pathogenic heterogeneity and may predict therapy response. Patterns I and II show signs of immune-mediated demyelination, but only pattern II is associated with antibody/complement deposition. In pattern III lesions, which include Baló's concentric sclerosis, primary oligodendrocyte damage was proposed. Serum antibody reactivities could reflect disease pathogenesis and thus distinguish histopathologically defined MS patterns. We established a customized microarray with more than 700 peptides that represent human and viral antigens potentially relevant for inflammatory demyelinating CNS diseases, and tested sera from 66 patients (pattern I n = 12; II n = 29; III n = 25, including 8 with Baló's), healthy controls, patients with Sjögren's syndrome and stroke patients. Cell-based assays were performed for aquaporin 1 (AQP1) and AQP4 antibody detection. No single peptide showed differential binding among study cohorts. Because antibodies can react with different peptides from one protein, we also analyzed groups of peptides. Patients with pattern II showed significantly higher reactivities to Nogo-A peptides as compared to patterns I (p = 0.02) and III (p = 0.02). Pattern III patients showed higher reactivities to AQP1 (compared to pattern I p = 0.002, pattern II p = 0.001) and varicella zoster virus (VZV, compared to pattern II p = 0.05). In patients with Baló's, AQP1 reactivity was also significantly higher compared to patients without Baló's (p = 0.04), and the former revealed distinct antibody signatures. Histologically, Baló's patients showed loss of AQP1 and AQP4 in demyelinating lesions, but no antibodies binding conformational AQP1 or AQP4 were detected. In summary, higher reactivities to Nogo-A peptides in pattern II patients could be relevant for enhanced axonal repair and remyelination. Higher reactivities to AQP1 peptides in pattern III patients and its subgroup of Baló's patients possibly reflect astrocytic damage. Finally, latent VZV infection may cause peripheral immune activation

    Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    Get PDF
    BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors

    An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA ligase IIIα within a flexible DNA repair complex

    Get PDF
    The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold

    The N-Terminal domain of SIRT1 is a positive regulator of endogenous SIRT1-dependent deacetylation and transcriptional outputs

    Get PDF
    SummaryThe NAD+-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-κB p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities
    • …
    corecore