18 research outputs found

    Galectin-1 is essential for efficient liver regeneration following hepatectomy

    Get PDF
    Galectin-1 (Gal1) is a known immune/inflammatory regulator which actsboth extracellularly and intracellularly, modulating innate and adaptive immuneresponses. Here, we explored the role of Gal1 in liver regeneration using 70% partial hepatectomy (PHx) of C57BL/6 wild type and Gal1-knockout (Gal1-KO, Lgals1-/-) mice. Gene or protein expression, in liver samples collected at time intervals from 2 to 168 hours post-operation, was tested by either RT-PCR or by immunoblotting and immunohistochemistry, respectively. We demonstrated that Gal1 transcript and protein expression was induced in the liver tissue of wild type mice upon PHx. Liver regeneration following PHx was significantly delayed in the Gal1-KO compared to the control liver. This delay was accompanied by a decreased Akt phosphorylation, and accumulation of the hepatocyte nuclear p21 protein in the Gal1-KO versus control livers at 24 and 48 hours following PHx. Transcripts of several known regulators of inflammation, cell cycle and cell signaling, including some known PHx-induced genes, were aberrantly expressed (mainly down-regulated) in Gal1-KO compared to control livers at 2, 6 and 24 hours post-PHx. Transient steatosis, which is imperative for liver regeneration following PHx, was significantly delayed and decreased in the Gal1- KO compared to the control liver and was accompanied by a significantly decreased expression in the mutant liver of several genes encoding lipid metabolism regulators.Our results demonstrate that Gal1 protein is essential for efficient liver regeneration following PHx through the regulation of liver inflammation, hepatic cell proliferation, and the control of lipid storage in the regenerating liver.Fil: Potikha, Tamara. Hadassah Hebrew University Medical Center; IsraelFil: Ella, Ezra. Hadassah Hebrew University Medical Center; IsraelFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mizrahi, Lina. Hadassah Hebrew University Medical Center; IsraelFil: Pappo, Orit. Hadassah Hebrew University Medical Center; IsraelFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Galun, Eithan. Hadassah Hebrew University Medical Center; IsraelFil: Goldenberg, Daniel S.. Hadassah Hebrew University Medical Center; Israe

    Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro

    Get PDF
    Until now, the adverse effects of toner powders on humans have been considered to be minimal. However, several recent reports have suggested possible significant adverse health effects from toner dust inhalation. The aim of this study was to evaluate the genotoxic potential of black toner powders in vitro. For the study of DNA damage, A549 cells were exposed to toner-powder suspensions and to their DMSO extracts, and then subjected to the comet assay and to the in-vitro cytokinesis block micronucleus test (CB-MNvit). Cytotoxic effects of the toner samples were assessed by the erythrosin B assay. Furthermore, size, shape, and composition of the toner powders were investigated. None of the three toner powders or their DMSO extracts reduced cell viability; however, they did induce DNA damage and formed micronuclei at concentrations from 80 to 400 μg cm⁻², although to a varying extent. All toner powders contain considerable amounts of the pigments carbon black and magnetite (Fe₃O₄) as well as small amounts of polycyclic aromatic hydrocarbons (PAHs). The overall results of our in-vitro study suggest that the investigated toner-powder samples are not cytotoxic but genotoxic. From the results of the physical and chemical characterization, we conclude that metals and metalloids as components of magnetite, or PAHs as components of the carbon-bearing material, are responsible for the genotoxic effects. Further research is necessary to determine the relevance of these in-vitro observations for private and occupational toner powder exposure

    Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells

    Get PDF
    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station fine crystals of PbSO4 (anglesite), ZnSO4•H2O (gunningite), and CaSO4 (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO4 and CaSO4 yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and Electron Paramagnetic Resonance (EPR), was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO4, whereas only slight effects could be found for PbSO4. Moreover, changes of cell cycle were observed for Zn sulfate and PbSO4. It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated c-Jun N-terminal kinases (JNK). During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO4 compared to the non-exposed cells was observed, and in our experiments only one CaSO4 particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO4, the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to the population living near such power plants

    The lncRNA H19-Derived MicroRNA-675 Promotes Liver Necroptosis by Targeting FADD

    No full text
    International audienceThe H19-derived microRNA-675 (miR-675) has been implicated as both tumor promoter and tumor suppressor and also plays a role in liver inflammation. We found that miR-675 promotes cell death in human hepatocellular carcinoma (HCC) cell lines. We show that Fas-associated protein with death domain (FADD), a mediator of apoptotic cell death signaling, is downregulated by miR-675 and a negative correlation exists between miR-675 and FADD expression in mouse models of HCC (p = 0.014) as well as in human samples (p = 0.017). We demonstrate in a mouse model of liver inflammation that overexpression of miR-675 promotes necroptosis, which can be inhibited by the necroptosis-specific inhibitor Nec-1/Nec-1s. miR-675 induces the level of both p-MLKL (Mixed Lineage Kinase Domain-Like Pseudokinase) and RIP3 (receptor-interacting protein 3), which are key signaling molecules in necroptosis, and enhances MLKL binding to RIP3. miR-675 also inhibits the levels of cleaved caspases 8 and 3, suggesting that miR-675 induces a shift from apoptosis to a necroptotic cellular pathway. In conclusion, downregulation of FADD by miR-675 promotes liver necroptosis in response to inflammatory signals. We propose that this regulation cascade can stimulate and enhance the inflammatory response in the liver, making miR-675 an important regulator in liver inflammation and potentially also in HCC

    Cellular Uptake and Toxic Effects of Fine and Ultrafine Metal-Sulfate Particles in Human A549 Lung Epithelial Cells

    No full text
    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO<sub>4</sub> (anglesite), ZnSO<sub>4</sub>·H<sub>2</sub>O (gunningite), and CaSO<sub>4</sub> (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO<sub>4</sub> and CaSO<sub>4</sub> yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO<sub>4</sub>, whereas only slight effects could be found for PbSO<sub>4</sub>. Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO<sub>4</sub>. It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO<sub>4</sub> compared to the nonexposed cells was observed, and in our experiments, only one CaSO<sub>4</sub> particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO<sub>4</sub>, the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants

    Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks

    No full text
    Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and is considered to be the outcome of chronic liver inflammation. Currently, the main treatment for HCC is surgical resection. However, survival rates are suboptimal partially because of tumor recurrence in the remaining liver. Our aim was to understand the molecular mechanisms linking liver regeneration under chronic inflammation to hepatic tumorigenesis. Mdr2-KO mice, a model of inflammation-associated cancer, underwent partial hepatectomy (PHx), which led to enhanced hepatocarcinogenesis. Moreover, liver regeneration in these mice was severely attenuated. We demonstrate the activation of the DNA damage-response machinery and increased genomic instability during early liver inflammatory stages resulting in hepatocyte apoptosis, cell-cycle arrest, and senescence and suggest their involvement in tumor growth acceleration subsequent to PHx. We propose that under the regenerative proliferative stress induced by liver resection, the genomic unstable hepatocytes generated during chronic inflammation escape senescence and apoptosis and reenter the cell cycle, triggering the enhanced tumorigenesis. Thus, we clarify the immediate and long-term contributions of the DNA damage response to HCC development and recurrence

    cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in a549 human lung epithelial cells: role of ROS, JNK, and NF-κB

    Get PDF
    Airborne particulate matter (PM) of varying size and composition is known to cause health problems in humans. The iron oxide Fe₃O₄ (magnetite) may be a major anthropogenic component in ambient PM and is derived mainly from industrial sources. In the present study, we have investigated the effects of four different size fractions of magnetite on signaling pathways, free radical generation, cytotoxicity, and genotoxicity in human alveolar epithelial-like type-II cells (A549). The magnetite particles used in the exposure experiments were characterized by mineralogical and chemical techniques. Four size fractions were investigated: bulk magnetite (0.2–10 μm), respirable fraction (2–3 μm), alveolar fraction (0.5–1.0 μm), and nanoparticles (20–60 nm). After 24 h of exposure, the A549 cells were investigated by transmission electron microscopy (TEM) to study particle uptake. TEM images showed an incorporation of magnetite particles in A549 cells by endocytosis. Particles were found as agglomerates in cytoplasm-bound vesicles, and few particles were detected in the cytoplasm but none in the nucleus. Increased production of reactive oxygen species (ROS), as determined by the 2′,7′-dichlorfluorescein-diacetate assay (DCFH-DA), as well as genotoxic effects, as measured by the cytokinesis block-micronucleus test and the Comet assay, were observed for all of the studied fractions after 24 h of exposure. Moreover, activation of c-Jun N-terminal kinases (JNK) without increased nuclear factor kappa-B (NF-κB)-binding activity but delayed IκB-degradation was observed. Interestingly, pretreatment of cells with magnetite and subsequent stimulation with the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) led to a reduction of NF-κB DNA binding compared to that in stimulation with TNFα alone. Altogether, these experiments suggest that ROS formation may play an important role in the genotoxicity of magnetite in A549 cells but that activation of JNK seems to be ROS- independent
    corecore