1,486 research outputs found
Recommended from our members
Azúcar y nervios: Explanatory models and treatment experiences of Hispanics with diabetes and depression
This study examined the explanatory models of depression, perceived relationships between diabetes and depression, and depression treatment experiences of low-income, Spanish-speaking, Hispanics with diabetes and depression. A purposive sample (n = 19) was selected from participants enrolled in a randomized controlled trial conducted in Los Angeles, California (United States) testing the effectiveness of a health services quality improvement intervention. Four focus groups followed by 10 in-depth semi-structured qualitative interviews were conducted. Data were analyzed using the methodology of coding, consensus, co-occurrence, and comparison, an analytical strategy rooted in grounded theory. Depression was perceived as a serious condition linked to the accumulation of social stressors. Somatic and anxiety-like symptoms and the cultural idiom of nervios were central themes in low-income Hispanics' explanatory models of depression. The perceived reciprocal relationships between diabetes and depression highlighted the multiple pathways by which these two illnesses impact each other and support the integration of diabetes and depression treatments. Concerns about depression treatments included fears about the addictive and harmful properties of antidepressants, worries about taking too many pills, and the stigma attached to taking psychotropic medications. This study provides important insights about the cultural and social dynamics that shape low-income Hispanics' illness and treatment experiences and support the use of patient-centered approaches to reduce the morbidity and mortality associated with diabetes and depression
Efficient Prodrug Activator Gene Therapy by Retroviral Replicating Vectors Prolongs Survival in an Immune-Competent Intracerebral Glioma Model.
Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials
Many-Body Dynamics and Exciton Formation Studied by Time-Resolved Photoluminescence
The dynamics of exciton and electron-hole plasma populations is studied via
time-resolved photoluminescence after nonresonant excitation. By comparing the
peak emission at the exciton resonance with the emission of the continuum, it
is possible to experimentally identify regimes where the emission originates
predominantly from exciton and/or plasma populations. The results are supported
by a microscopic theory which allows one to extract the fraction of bright
excitons as a function of time.Comment: 11 pages, 5 figure
Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons
Time-resolved photoluminescence spectra after nonresonant excitation show a
distinct 1s resonance, independent of the existence of bound excitons. A
microscopic analysis identifies excitonic and electron-hole plasma
contributions. For low temperatures and low densities the excitonic emission is
extremely sensitive to even minute optically active exciton populations making
it possible to extract a phase diagram for incoherent excitonic populations.Comment: 9 pages, 4 figure
Recommended from our members
Going beyond Visualization. Verbalization as Complementary Medium to Explain Machine Learning Models
In this position paper, we argue that a combination of visualization and verbalization techniques is beneficial for creating broad and versatile insights into the structure and decision-making processes of machine learning models. Explainability of machine
learning models is emerging as an important area of research. Hence, insights into the inner workings of a trained model allow users and analysts, alike, to understand the models, develop justifications, and gain trust in the systems they inform. Explanations can be generated through different types of media, such as visualization and verbalization. Both are powerful tools that enable model interpretability. However, while their combination is arguably more powerful than each medium separately, they are currently applied and researched independently. To support our position that the combination of the two techniques is beneficial to explain machine learning models, we describe the design space of such a combination and discuss arising research questions, gaps, and opportunities
Angle-resonant stimulated polariton amplifier
We experimentally demonstrate resonant coupling between photons and excitons in microcavities which can efficiently generate enormous single-pass optical gains approaching 100. This new parametric phenomenon appears as a sharp angular resonance of the incoming pump beam, at which the moving excitonic polaritons undergo very large changes in momentum. Ultrafast stimulated scattering is clearly identified from the exponential dependence on pump intensity. This device utilizes boson amplification
induced by stimulated energy relaxation
Some results on the lattice parameters of quaternionic Gabor frames
Gabor frames play a vital role not only modern harmonic analysis but also in several fields of applied mathematics, for instances, detection of chirps, or image processing. In this work we present a non-trivial generalization of Gabor frames to the quaternionic case and give new density results. The key tool is the two-sided windowed quaternionic Fourier transform (WQFT). As in the complex case, we want to write the WQFT as an inner product between a quaternion-valued signal and shifts and modulates of a real-valued window function. We demonstrate a Heisenberg uncertainty principle and for the results regarding the density, we employ the quaternionic Zak transform to obtain necessary and sufficient conditions to ensure that a quaternionic Gabor system is a quaternionic Gabor frame. We conclude with a proof that the Gabor conjecture do not hold true in the quaternionic case
Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser
The frequency comb created by a femtosecond mode-locked laser and a
microstructured fiber is used to phase coherently measure the frequencies of
both the Hg^+ and Ca optical standards with respect to the SI second as
realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609
899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition
to the unprecedented precision demonstrated here, this work is the precursor to
all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when
combined with previous measurements, we find no time variations of these atomic
frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14}
yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let
Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures
A microscopic theory is developed to analyze the dynamics of exciton
formation out of incoherent carriers in semiconductor heterostructures. The
carrier Coulomb and phonon interaction is included consistently. A cluster
expansion method is used to systematically truncate the hierarchy problem. By
including all correlations up to the four-point (i.e. two-particle) level, the
fundamental fermionic substructure of excitons is fully included. The analysis
shows that the exciton formation is an intricate process where Coulomb
correlations rapidly build up on a picosecond time scale while phonon dynamics
leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure
Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous
semiconductor laser devices. The QMBE are derived from fully quantum mechanical
operator dynamics describing the interaction of the light field with the
quantum states of the electrons and the holes near the band gap. By taking into
account field-field correlations and field-dipole correlations, the QMBE
include quantum noise effects which cause spontaneous emission and amplified
spontaneous emission. In particular, the source of spontaneous emission is
obtained by factorizing the dipole-dipole correlations into a product of
electron and hole densities. The QMBE are formulated for general devices, for
edge emitting lasers and for vertical cavity surface emitting lasers, providing
a starting point for the detailed analysis of spatial coherence in the near
field and far field patterns of such laser diodes. Analytical expressions are
given for the spectra of gain and spontaneous emission described by the QMBE.
These results are applied to the case of a broad area laser, for which the
frequency and carrier density dependent spontaneous emission factor beta and
the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in
abstract and in the discussion of temporal coherenc
- …
