1,486 research outputs found

    Efficient Prodrug Activator Gene Therapy by Retroviral Replicating Vectors Prolongs Survival in an Immune-Competent Intracerebral Glioma Model.

    Get PDF
    Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials

    Many-Body Dynamics and Exciton Formation Studied by Time-Resolved Photoluminescence

    Full text link
    The dynamics of exciton and electron-hole plasma populations is studied via time-resolved photoluminescence after nonresonant excitation. By comparing the peak emission at the exciton resonance with the emission of the continuum, it is possible to experimentally identify regimes where the emission originates predominantly from exciton and/or plasma populations. The results are supported by a microscopic theory which allows one to extract the fraction of bright excitons as a function of time.Comment: 11 pages, 5 figure

    Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons

    Full text link
    Time-resolved photoluminescence spectra after nonresonant excitation show a distinct 1s resonance, independent of the existence of bound excitons. A microscopic analysis identifies excitonic and electron-hole plasma contributions. For low temperatures and low densities the excitonic emission is extremely sensitive to even minute optically active exciton populations making it possible to extract a phase diagram for incoherent excitonic populations.Comment: 9 pages, 4 figure

    Angle-resonant stimulated polariton amplifier

    Get PDF
    We experimentally demonstrate resonant coupling between photons and excitons in microcavities which can efficiently generate enormous single-pass optical gains approaching 100. This new parametric phenomenon appears as a sharp angular resonance of the incoming pump beam, at which the moving excitonic polaritons undergo very large changes in momentum. Ultrafast stimulated scattering is clearly identified from the exponential dependence on pump intensity. This device utilizes boson amplification induced by stimulated energy relaxation

    Some results on the lattice parameters of quaternionic Gabor frames

    Get PDF
    Gabor frames play a vital role not only modern harmonic analysis but also in several fields of applied mathematics, for instances, detection of chirps, or image processing. In this work we present a non-trivial generalization of Gabor frames to the quaternionic case and give new density results. The key tool is the two-sided windowed quaternionic Fourier transform (WQFT). As in the complex case, we want to write the WQFT as an inner product between a quaternion-valued signal and shifts and modulates of a real-valued window function. We demonstrate a Heisenberg uncertainty principle and for the results regarding the density, we employ the quaternionic Zak transform to obtain necessary and sufficient conditions to ensure that a quaternionic Gabor system is a quaternionic Gabor frame. We conclude with a proof that the Gabor conjecture do not hold true in the quaternionic case

    Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser

    Get PDF
    The frequency comb created by a femtosecond mode-locked laser and a microstructured fiber is used to phase coherently measure the frequencies of both the Hg^+ and Ca optical standards with respect to the SI second as realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609 899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition to the unprecedented precision demonstrated here, this work is the precursor to all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when combined with previous measurements, we find no time variations of these atomic frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14} yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let

    Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures

    Full text link
    A microscopic theory is developed to analyze the dynamics of exciton formation out of incoherent carriers in semiconductor heterostructures. The carrier Coulomb and phonon interaction is included consistently. A cluster expansion method is used to systematically truncate the hierarchy problem. By including all correlations up to the four-point (i.e. two-particle) level, the fundamental fermionic substructure of excitons is fully included. The analysis shows that the exciton formation is an intricate process where Coulomb correlations rapidly build up on a picosecond time scale while phonon dynamics leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure

    Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

    Get PDF
    We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects which cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities. The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting lasers, providing a starting point for the detailed analysis of spatial coherence in the near field and far field patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency and carrier density dependent spontaneous emission factor beta and the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in abstract and in the discussion of temporal coherenc
    corecore