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Abstract
Gabor frames play a vital role not only modern harmonic analysis but also

in several fields of applied mathematics, for instances, detection of chirps, or
image processing. In this work we present a non-trivial generalization of Gabor
frames to the quaternionic case and give new density results. The key tool is the
two-sided windowed quaternionic Fourier transform (WQFT). As in the complex
case, we want to write the WQFT as an inner product between a quaternion-
valued signal and shifts and modulates of a real-valued window function. We
demonstrate a Heisenberg uncertainty principle and for the results regarding
the density, we employ the quaternionic Zak transform to obtain necessary and
sufficient conditions to ensure that a quaternionic Gabor system is a quaternionic
Gabor frame. We conclude with a proof that the Gabor conjecture do not hold
true in the quaternionic case.

1 Introduction
As a generalization of the real and complex Fourier transform (FT), the quaternionic
Fourier transform (QFT) with two exponential kernels using two non-commutative
complex variables, receives an increasing attention in the representation of signals
[1, 3, 4, 6, 7, 8, 9, 13]. There is some degree of freedom as where one can applies the
exponential kernels, see for example [1, 7]. The right-sided version has been thoroughly
studied by M. Bahri et a.l. in [1, 2, 3], among others. In this paper we are going to use
the two-sided (sandwiched) version, which leads to more symmetric properties than
the one-sided version [1, 3, 9, 13]. Nevertheless, as in the case of the FT, the QFT
cannot capture the features of instationnary signals. To overcome this problem we
multiply the signal with translations and modulations of a real-valued window function
and then apply the QFT. This procedure yields a joint representation of locality and
frequency. Hence, the window function is also of importance in the synthesis of the
signal. In applications it is required to reconstruct the signal from a discrete set of
data in a given lattice. The properties of this lattice are crucial for the reconstruction.
In the non-quaternionic case three different situations can occur, which depend on the
lattice parameters α and β. If the product of these two parameters is greater than 1,
a reconstruction is not possible, whereas it is possible for certain functions, e.g. the
Gaussian function, if αβ < 1. The third case, αβ = 1, also known as critical density, is
interesting since it allows for the existence of orthogonal basis. This leads to the study
of the synthesis of the signal under certain circumstances. This situation is still under
investigation, see [5, 12, 14, 15].
In the quaternionic case, the influence of the density of the lattice in the reconstruction
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of the signal is not yet fully studied. Based on that, we focus our attention on the critical
density case αβ = 1. Since the Gaussian function also minimizes the quaternionic
version of the Heisenberg uncertainty principle, we are especially interested in the
Gaussian window at the critical density. Our final result is a partial generalization of
the Lyubarskii and Seip-Wallstens Theorem [16, 17].
The paper is organized as follows: In Section 2 we briefly sketch some results on
quaternionic algebra and Wiener-Amalgam spaces. In Section 3 we summarize (without
proofs) the relevant material on WQFT and develop the theory of quaternionic Gabor
frames. As the Zak transform will be our main tool for obtaining density results,
we introduce in this section the quaternionic Zak transform and establish its main
properties (unitarity, periodicity, inversion formula, etc.). In Section 4 we provide the
connections between the Zak transform of the window function and the frame bounds
(related to the parameters α and β), together with the conditions under which the
quaternionic Gabor system constitutes a quaternionic Gabor frame.

2 Preliminaries

2.1 Quaternions
The quaternion algebra H is an extension of the complex numbers into four dimensions
and is given by

H = {q | q = q0 + q1i+ q2j + q3k, with q0, q1, q2, q3 ∈ R},

where the elements i, j, k satisfy

ij = −ji = k i2 = j2 = k2 = ijk = −1.

We can write a quaternion q also as a sum of a scalar Sc[q] = q0 ∈ R and a three-
dimensional vector Vec[q] = q1i+ q2j + q3k, Vec[q] is often called pure quaternion,

q = Sc[q] + Vec[q].

The conjugate is an automorphism on H, given by q 7→ q = Sc[q]−Vec[q]. Moreover

qq = |q|2.

Although quaternions are noncommutative, in general, a cyclic multiplication property
exists. This feature is going to be a useful tool for the rest of this work.

Lemma 1 (Cyclic multiplication [11])
For all q, r, s ∈ H holds

Sc[qrs] = Sc[rsq] = Sc[sqr]. (1)
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2.2 Related function spaces
In the following we use the space L2(R2,H), an immediate generalization of the Hilbert
space of all square-integrable functions, which consists of all quaternion-valued functions
f : R2 → H with finite norm

‖f‖2 =
(∫

R2
|f(x)|2 d2x

)1/2
<∞

where d2x = dx1 dx2 represents the usual Lebesgue measure in R2. The L2-norm is
induced by the symmetric real scalar product

〈f, g〉 = Sc
∫
R2
f(x)g(x)d2x = 1

2

∫
R2

(g(x)f(x) + f(x)g(x)) d2x (2)

which makes the space a real linear space.

Remark 1 ([13])
It is also possible to define a quaternion-valued inner product on L2(R2,H) with

(f, g) =
∫
R2
f(x)g(x)d2x

in which case one obtains a left Hilbert module. We remark that for a quaternion-valued
inner product one has the following scalar-product rules

(λf, g) = λ(f, g), (f, gλ) = (f, g)λ, λ ∈ H.

Both inner products lead to the same norm.

The two-dimensional cube [0, α]2 will be denoted by Qα and the special case of α = 1
simply by Q. The Wiener-Amalgam space is a suitable space from where to choose the
window functions.
Definition 1 (Wiener-Amalgam space [10])
A function g ∈ L∞(R2,R) belongs to the Wiener-Amalgam space Wα = Wα(R2) if

‖g‖Wα =
∑

n∈Z2

ess sup
x∈R2

|g(x)XQα(x− αn)| (3)

is finite.

The subspace of the continuous functions is denoted by Wα
0 = Wα ∩ C.

3 Quaternionic Gabor frames Gq(g, α, β)
In this section we extend the complex Fourier transform to the two-sided quaternionic
setting [6, 7, 9]. We show some properties of the two-sided quaternionic Fourier
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transform. With the same motivation as in the short-time real-valued Fourier transform
we have to multiply the signal with a window function g to obtain local information
of the frequency. This idea leads to quaternionic Gabor frames and related operators,
which will be discussed in the second part. The definition of the Zak transform in the
third part arises naturally and will be our main tool for the density results.

3.1 The quaternionic Gabor transfom
Definition 2 (Two sided quaternionic Fourier transform (QFT) [9])
The two sided quaternionic Fourier transform of f ∈ L2(R2,H) is the function Fq(f) :
R2 → H defined by

ω = (ω1, ω2) 7→ Fq(f)(ω) = f̂(ω) =
∫
R2

exp(−2πix1ω1)f(x) exp(−2πjx2ω2)d2x.

Remark 2 ([9])
For the reconstruction of f we obtain

x = (x1, x1) 7→ f(x) = F−1
q (Fqf)(x) =

∫
R2

exp(2πix1ω1)f̂(ω) exp(2πjx2ω2)d2ω. (4)

There is also a Heisenberg uncertainty principle in the QFT case. Moreover, the
two-dimensional Gaussian function minimizes the uncertainty.

Definition 3 ([3])
Let f ∈ L2(R2,H) be such that xkf ∈ L2(R2,H) and let f̂ ∈ L2(R2,H) be its QFT
such that ωkf̂ ∈ L2(R2,H). The spatial uncertainty ∆xk is defined as

∆xk =

√
1
‖f‖2

2

∫
R2
|f(x)|2x2

k d
2x

and the spectral uncertainty ∆ωk is defined as

∆ωk =
√

1
‖f̂‖2

2

∫
R2
|f̂(ω)|2ω2

k d
2ω, for k = 1, 2

Theorem 1 (Heisenberg uncertainty principle in QFT case)
Let f ∈ L2(R2,H) satisfy to (1 + |xk|)f(x) ∈ L2(R2,H) and ∂

∂xk
f(x) ∈ L2(R2,H).

Then we have
∆xk∆ωk ≥

1
4π for k = 1, 2.

Also, equality holds if and only if f(x) is a Gaussian function.

Since the proof is similar to [3], we omit it.
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Definition 4 (Windowed quaternionic Fourier transform [9])
The windowed quaternionic Fourier transform (WQFT) of f ∈ L2(R2,H) with respect
to a non-zero window function g ∈ L2(R2,R) is defined as

Qgf(b, ω) =
∫
R2

exp(−2πix1ω1)f(x)g(x−b) exp(−2πjx2ω2)d2x, (b, ω) ∈ R2×R2.

In order to write Qgf(b, ω) as an inner product of f with translates by b and modula-
tions by ω of g, we use the concept of carriers, introduced by Shapiro et al. [18].
Definition 5 (Carrier [18])
For two quaternions p, q ∈ H we define the right Cr and left Cl carrier operators as

Cr(p)q = qp and qCl(p) = pq.

Lemma 2 (Properties of the carrier)
The carriers have the following properties with p ∈ H
(a) Cr(p) = Cl(p) and Cl(p) = Cr(p),
(b) Cr(p)1 = 1Cl(p) = p.

Now, we are equipped with the necessary tools for the generalization of translations
and modulations to our setting.
Definition 6
For b, ω ∈ R2 we define the following operators

Tbg(x) = g(x− b) translation by b ∈ R2

and

Mωg(x) = exp(2πjω2x2)g(x)Cr(exp(2πiω1x1)) modulation by ω ∈ R2.

With the help of those two operators we rewrite the WQFT as

Qgf(b, ω) = (f,MωTbg).

Since the translation and modulation only act on the window function g, it is quite
interesting to point out properties between translation and modulation.
Remark 3
Those two operators satisfy the following commutation relation

TbMωg(x) = exp(2πjb2ω2)MωTbg(x) exp(2πib1ω1). (5)

As a result, translation and modulation commute if and only if b1ω1 and b2ω2 ∈ Z.
We also obtain the following relation which displays the interplay between the two
operators and the QFT:

T̂bg(ω) = Mbĝ(ω) and Tω ĝ(ξ) = M̂−ωg(ξ).

Also, based on these operators we can express the norm (3) of the Wiener-Amalgam
space as

‖g‖Wα =
∑

n∈Z2

‖gTαnXQα‖∞.
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We now look into some properties of the WQFT.

Theorem 2
Let g ∈ L2(R2,R) be a non-zero window function and f ∈ L2(R2,H). Then, we have

Qg(Tx0f)(b, ω) = exp(−2πix01ω1)Qgf(b− x0, ω) exp(−2πjx02ω2)

and
Qg(M−ω0f)(b, ω) = Qgf(b, ω − ω0).

Proposition 1 (Reconstruction formula)
Let g ∈ L2(R2,R) be a non-zero window function. Then, every f ∈ L2(R2,H) can be
fully reconstructed by

f(x) = 1
‖g‖2

2

∫
R2

∫
R2

exp(2πix1ω1)Qgf(b, ω)g(x− b) exp(2πjx2ω2)d2ω d2b.

Theorem 3 (Orthogonality relation)
Let g ∈ L2(R2,R) be a non-zero window function and f, h ∈ L2(R2,H). Then,
Qgf,Qgh ∈ L2(R2,H) and

〈Qgf,Qgh〉 = ‖g‖2
2〈f, h〉.

For the proofs we refer to [9].

3.2 The analysis and synthesis operators
In applications we have to replace integrals over R2×R2 by sums over a four-dimensional
lattice in space and frequency. Hence, the properties of the lattice are crucial for the
decomposition and reconstruction of the signal. The question of synthesis of the signal
is the main key of this paper, as it influences both its decomposition and reconstruction.
For obtaining further results with respect to the synthesis we will require the following
definitions and theorems. In this, we follow the notations of K. Gröchenig [10].

Definition 7 (Quaternionic Gabor frame)
Given a non-zero g ∈ L2(R2,R) and lattice parameters α, β > 0, then the set of
space-frequency shifts

Gq(g, α, β) = {MβnTαmg, with m,n ∈ Z2}

is called a quaternionic Gabor system. The set Gq(g, α, β) is a frame for L2(R2,H) if
there exist real constants A,B > 0 such that

A‖f‖2 ≤
∑

m,n∈Z2

|〈f,MβnTαmg〉|2 ≤ B‖f‖2 ∀f ∈ L2(R2,H).
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Definition 8
For Gq(g, α, β) = {MβnTαmg : m,n ∈ Z2} ⊆ L2(R2,H) we define the coefficient
operator, or analysis operator, Cq by

Cqf = {〈f,MβnTαmg〉 : m,n ∈ Z2}.

Conversely, given a real-valued sequence c = {cm,n : m,n ∈ Z2} we define the
reconstruction operator, or synthesis operator, Dq by

Dqc =
∑

m,n∈Z2

exp(2πiβn1)cm,ng(x− αm) exp(2πjβn2) =
∑

m,n∈Z2

cm,nM−βnTαmg

In consequence, the associated frame operator Sq on L2(R2,H) has the following form

Sqf = DqCqf =
∑

m,n∈Z2

〈f,MβnTαmg〉M−βnTαmg.

3.3 The quaternionic Zak transform
The quaternionic Zak transform is a natural extension of the Zak transform into the
two-sided quaternionic setting. Therefore, most of its properties are preserved in this
setting. In harmonic analysis the Zak transform is also known as Weil-Brezin map.

Definition 9 (Quaternionic Zak transform)
The quaternionic Zak transform of a quaternion-valued function f ∈ L2(R2,H) is
defined as

Zαq f(x, ω) =
∑

m∈Z2

exp(2πjαm2ω2)f(x− αm)Cr(exp(2πiαm1ω1)), x, ω ∈ R2.

The following theorem shows that the quaternionic Zak transform is a unitary operator,
mapping L2(R2,H) onto L2(Qα ×Q1/α,H), up to a constant.

Theorem 4
For ϕ,ψ ∈ L2(R2,H), it holds

〈Zαq ϕ,Zαq ψ〉 = α−2〈ϕ,ψ〉.

In particular,

‖Zαq ϕ‖2
L2(Qα×Q1/α) =

∫
Qα

∫
Q1/α

|Zαq ϕ(x, ω)|2 d2x d2ω = α−2‖ϕ‖2
2.

Proposition 2 (Quasiperiodicity conditions)
The transform Zαq fulfills

Zαq f(x, ω+ 1
α

) = Zαq f(x, ω), Zαq f(x+1α, ω) = exp(2πjαω2)Zαq f(x, ω) exp(2πiαω1)).
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Thus, Zαq is periodic and it is sufficient to know its values in the cube Qα ×Q1/α. In
the next Lemma we proof an inversion formula for the signal f by means of its Zak
transform. Combining these results, we conclude with the reconstruction of the signal
f based on the values of its Zak transform on the cube Q1/α.

Theorem 5 (Inversion formula [10])
If f ∈ L2(R2,H) then,

f(x) = α2
∫
Q1/α

Zαq f(x, ω)d2ω, x ∈ R2.

This allows us to recapture the whole function f solely by the values of Zαq f on Q1/α.

Lemma 3
We have for the Zak transform of M k

α
Tαng

Zαq (M k
α
Tαng)(x, ω)

= exp(−2πjαn2ω2) exp(2πjk2
x2

α
)Zαq g(x, ω) exp(2πik1

x1

α
) exp(−2πiαn1ω1).

The proof is an easy calculation and, therefore, it will be omitted. Nevertheless, the
result is useful for the next lemma. At this point we remark that this corresponds to
assume β = 1

α , that is the critical density case.

Lemma 4
If f ∈ L2(R2,H) and g ∈ L2(R2,R), then we have∑

k,n∈Z2

|〈f,M k
α
Tαng〉|2 = α4‖Zαq fZαq g‖2

L2(Qα×Q1/α).

Proof. By Theorem 4 and Lemma 3∑
k,n∈Z2

|〈f,M k
α
Tαng〉|2

=
∑

k,n∈Z2

|〈αZαq f, αZαqM k
α
Tαng〉|2

= α4
∑

k,n∈Z2

|Sc
∫
Qα

∫
Q1/α

Zαq f ZαqM k
α
Tαn d2x d2ω|2

= α4
∑

k,n∈Z2

|Sc
∫
Qα

∫
Q1/α

Zαq fCl(exp(2πi(αn1ω1 −
k1

α
x1)))

Zαq g exp(−2πj k2

α
x2) exp(2πjαn2ω2)d2x d2ω|2

= α2
∑

k,n∈Z2

|Sc
∫
Qα

∫
Q1/α

exp(2πiαn1ω1) exp(−2πik1

α
x1)Zαq fZαq g

exp(−2πj k2

α
x2) exp(2πjαn2ω2)d2x d2ω|2
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= α4
∑

k,n∈Z2

|Sc
∫
Qα

∫
Q1/α

Zαq fZαq g exp(−2πj k2

α
x2) exp(2πjαn2ω2)

exp(2πiαn1ω1) exp(−2πik1

α
x1)d2x d2ω|2

= α4
∑

k,n∈Z2

|〈Zαq fZαq g, exp(−2πj k2

α
x2) exp(2πjαn2ω2) exp(2πiαn1ω1) exp(−2πik1

α
x1)〉|2

= α4‖Zαq fZαq g‖2
L2(Qα×Q1/α)

since exp(−2πj k2
α x2) exp(2πjαn2ω2) exp(2πiαn1ω1) exp(−2πik1

α x1) is an orthonormal
basis for L2(Qα ×Q1/α,H).

4 Some density results for Gq(g, α, β)
In this section we use the quaternionic Zak transform to show under which conditions
a quaternionic Gabor system generates a quaternionic Gabor frame.
Lemma 5
For g ∈ L2(R2,R), and α > 0 we have that Gq(g, α, 1

α ) is a frame for L2(R2,H) if and
only if there exist 0 < a ≤ b <∞ such that

0 < a ≤ |Zαq g(x, ω)|2 ≤ b <∞ almost everywhere in Qα ×Q1/α.

Moreover, the optimal frame bounds are then given by

Aopt = α2 ess inf
(x,ω)∈Qα×Q1/α

|Zαq g(x, ω)|2,

Bopt = α2 ess sup
(x,ω)∈Qα×Q1/α

|Zαq g(x, ω)|2.

Proof. For the first statement, assume that Gq(g, α, 1
α ) is a frame for L2(R2,H), that

is to say,
A‖f‖2

2 ≤
∑

k,n∈Z2

|〈f,M k
α
Tnαg〉| ≤ B‖f‖2

2.

By Lemma 4 we get that, for all F = Zαq f ∈ L2(Qα ×Q1/α,H), it holds

Aα2‖F‖2
L2(Qα×Q1/α) ≤ α

4‖FZαq g‖2
L2(Qα×Q1/α) ≤ Bα

2‖F‖2
L2(Qα×Q1/α),

or
A‖F‖2

L2(Qα×Q1/α) ≤ α
2‖FZαq g‖2

L2(Qα×Q1/α) ≤ B‖F‖
2
L2(Qα×Q1/α),

almost everywhere in Qα×Q1/α. This implies a ≤ |Zαq g(x, ω)|2 ≤ b almost everywhere
in Qα ×Q1/α, where a = A and b = B. On the other hand, if a ≤ α2|Zαq g(x, ω)|2 ≤ b
almost everywhere in Qα ×Q1/α, then we obtain that

a‖Zαq f‖2
L2(Qα×Q1/α) ≤ α

2‖Zαq fZαq g‖2
L2(Qα×Q1/α) ≤ b‖Z

α
q f‖2

L2(Qα×Q1/α)
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and, by Lemma 4 and Theorem 4, we conclude

a‖f‖2
2 ≤ α4‖Zαq fZαq g‖2

L2(Qα×Q1/α) =
∑

k,n∈Z2

|〈f,M k
α
Tαng〉|2 ≤ b‖f‖2

2.

Thus, the proof of the first statement is complete.
For the optimal frame bounds, and from

A‖f‖2
2 ≤

∑
k,n∈Z2

|〈f,M k
α
Tnαg〉| ≤ B‖f‖2

2,

we obtain

Aα2‖F‖2
L2(Qα×Q1/α) ≤ α

4‖FZαq g‖2
L2(Qα×Q1/α) ≤ α

2B‖F‖2
L2(Qα×Q1/α)

almost everywhere in Qα ×Q1/α. From the first inequality, we have that

A

∫
Qα

∫
Q1/α

|F (x, ω)|2 d2x d2ω ≤
∫
Qα×Q1/α

|F (x, ω)|2α2|Zαq g(x, ω)|2 d2ω

which implies ∫
Qα

∫
Q1/α

|F (x, ω)|2
(
α2|Zαq g(x, ω)|2 −A

)
d2ω d2x,

almost everywhere in Qα ×Q1/α. Hence,

A ≤ α2|Zαq g(x, ω)|2,

and we obtain as lower optimal frame bound the estimate

Aopt = α2 ess inf
(x,ω)∈Qα×Q1/α

|Zαq g(x, ω)|2.

The proof for the upper optimal frame bound is similar and, therefore, it will be
omitted.

Since an orthonormal basis is a special case of a frame, the next lemma follows
immediately.

Lemma 6
For a given window g ∈ L2(R2,R) and α > 0, the quaternionic Gabor system Gq(g, α, 1

α )
is an orthonormal basis for L2(R2,H) if and only if |Zαq g(x, ω)|2 = α−2 almost every-
where in Qα ×Q1/α.

Proof. If Gq(g, α, 1
α ) is an orthonormal basis for L2(R2,H), then∑

k,n∈Z2

|〈f,M k
α
Tαng〉|22 = ‖f‖2

2 = α2‖Zαq f‖2
L2(Qα×Q1/α).
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By Lemma 4 we have

α4‖Zαq fZαq g‖2
L2(Qα×Q1/α) = α2‖Zαq f‖2

L2(Qα×Q1/α)

which implies |Zαq g(x, ω)|2 = α−2 for almost all (x, ω) ∈ Qα ×Q1/α.

We assume now that |Zαq g(x, ω)|2 = α−2 for almost all (x, ω) ∈ Qα ×Q1/α. Then, by
Lemmas 4 and 5, M k

α
Tαng is a tight frame for L2(R2,H). Indeed, Aopt = Bopt = 1.

Finally, due to Theorem 4, ‖M k
α
Tαng‖2 = ‖g‖2 = α2‖Zαq g‖L2(Qα×Q1/α) = 1. This

result combined with Lemma 5.1.6 (a) of [10] implies that Gq(g, α, 1
α ) is an orthonormal

basis for L2(R2,H).

The Gaussian function plays an important role in time-frequency analysis, since it
minimizes the Heisenberg uncertainty principle. We have already seen that the two-
dimensional Gaussian also minimizes the Heisenberg uncertainty principle in our
two-sided quaternionic setting. Motivated by this, we establish the following theorem.
Theorem 6
The quaternionic Gabor system Gq(exp(−πx2), α, 1

α ) is not a frame for L2(R2,H).

Proof. In the first step we demonstrate that for any function g ∈Wα
0 , the quaternionic

Zak transform Zαq g is continuous. And in the second step we show that the Zak
transform of exp(−πx2) ∈Wα

0 (R2) has at least one zero. Therefore, Lemma 5 can not
hold, as Aopt = 0.
Step (1):
Given ε > 0, there exists a N > 0 such that∑

|k|>N

‖gTαkXQα‖∞ <
ε

4 .

Then, the main term
∑
|k|≤N exp(2πjαk2ω2)g(x − αk) exp(2πiαk1ω1) is uniformly

continuous on compact sets of R4, and there exists a δ > 0 such that∣∣∣∣∣∣
∑
|k|≤N

exp(2πjαk2ω2)g(x− αk) exp(2πiαk1ω1)−
∑
|k|≤N

exp(2πjαk2ξ2)g(y− αk) exp(2πiαk1ξ1)

∣∣∣∣∣∣ < ε

2

whenever |x − y| + |ω − ξ| < δ. As a consequence, |Zαq g(x, ω) − Zαq g(y, ξ)| < ε and
Zαq g is continuous.
Step (2):
We have for ϕ(x) = exp(−πx2

1 − πx2
2)

Zαq ϕ(x, ω) =
∑

m∈Z2

exp(2πjαm2ω2) exp(−π(x− αm)2) exp(2πiαm1ω1)

= exp(−πx2
2)
∑

m∈Z2

exp(2πjαm2ω2 + 2παx2m2 − πα2m2
2)

exp(−πα2m2
1 + 2παm1x1 + 2πiαm1ω1) exp(−πx2

1)
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= exp(−πx2
2)
∑

m∈Z2

exp(2πjαm2(x2 + jω2)− πα2m2
2)

exp(2πiαm1(x1 − iω1)− πα2m2
1) exp(−πx2

1).

We set now ω1 = ω2 = 1
2α and x1 = x2 = α

2 and get for the inner sum∑
m∈Z2

exp(m2πj − πα2m2 − πα2m2
2) exp(m1πi− πα2m1 − πα2m2

1)

∑
m∈Z2

(−1)m2 exp(πα2(−m2 −m2
2)) (−1)m1 exp(πα2(−m1 −m2

1)).

To see that this sum is zero, we match m2 ≥ 0 with −m2−1 and observe that they have
opposite parity. Moreover, (−m2 − 1)2 + (−m2 − 1) = m2

2 +m2. The same argument
goes for the second part of the sum. Therefore, Zαq ϕ(x, ω) is zero for ω1 = ω2 = 1

2α
and x1 = x2 = α

2 and our proof is finished.

The last result could be seen as Gabor’s conjecture in the quaternionic case.

5 Conclusions
Using the two-sided quaternionic Fourier transform, we established the theory of the
WQFT and quaternionic Gabor systems. Due to the non-commutativity we showed
that the usual interplay between the translation and modulation operators holds in a
more elaborated way. Thus, the underlying structure could be interesting for future
research. By using the quaternionic Zak transform we could obtain conditions which
ensure the quaternionic Gabor system to constitute a quaternionic Gabor frame. The
two-dimensional Gaussian is of special interest as a window function, as it minimizes
the uncertainty principle. Motivated by this fact, we were able to show that the Gabor’s
conjecture for the quaternionic case does not hold.
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