8 research outputs found

    Entropy Measures of Electroencephalograms towards the Diagnosis of Psychogenic Non-Epileptic Seizures

    Get PDF
    Psychogenic non-epileptic seizures (PNES) may resemble epileptic seizures but are not caused by epileptic activity. However, the analysis of electroencephalogram (EEG) signals with entropy algorithms could help identify patterns that differentiate PNES and epilepsy. Furthermore, the use of machine learning could reduce the current diagnosis costs by automating classification. The current study extracted the approximate sample, spectral, singular value decomposition, and Renyi entropies from interictal EEGs and electrocardiograms (ECG)s of 48 PNES and 29 epilepsy subjects in the broad, delta, theta, alpha, beta, and gamma frequency bands. Each feature-band pair was classified by a support vector machine (SVM), k-nearest neighbour (kNN), random forest (RF), and gradient boosting machine (GBM). In most cases, the broad band returned higher accuracy, gamma returned the lowest, and combining the six bands together improved classifier performance. The Renyi entropy was the best feature and returned high accuracy in every band. The highest balanced accuracy, 95.03%, was obtained by the kNN with Renyi entropy and combining all bands except broad. This analysis showed that entropy measures can differentiate between interictal PNES and epilepsy with high accuracy, and improved performances indicate that combining bands is an effective improvement for diagnosing PNES from EEGs and ECGs

    Hippocampal internal architecture and postoperative seizure outcome in temporal lobe epilepsy due to hippocampal sclerosis

    Get PDF
    AbstractPurposeSemi-quantitative analysis of hippocampal internal architecture (HIA) on MRI has been shown to be a reliable predictor of the side of seizure onset in patients with temporal lobe epilepsy (TLE). In the present study, we investigated the relationship between postoperative seizure outcome and preoperative semi-quantitative measures of HIA.MethodsWe determined HIA on high in-plane resolution preoperative T2 short tau inversion recovery MR images in 79 patients with presumed unilateral mesial TLE (mTLE) due to hippocampal sclerosis (HS) who underwent amygdalohippocampectomy and postoperative follow up. HIA was investigated with respect to postoperative seizure freedom, neuronal density determined from resected hippocampal specimens, and conventionally acquired hippocampal volume.ResultsHIA ratings were significantly related to some neuropathological features of the resected hippocampus (e.g. neuronal density of selective CA regions, Wyler grades), and bilaterally with preoperative hippocampal volume. However, there were no significant differences in HIA ratings of the to-be-resected or contralateral hippocampus between patients rendered seizure free (ILAE 1) compared to those continuing to experience seizures (ILAE 2-5).ConclusionsThis work indicates that semi-quantitative assessment of HIA on high-resolution MRI provides a surrogate marker of underlying histopathology, but cannot prospectively distinguish between patients who will continue to experience postoperative seizures and those who will be rendered seizure free. The predictive power of HIA for postoperative seizure outcome in non-lesional patients with TLE should be explored

    Thalamohippocampal atrophy in focal epilepsy of unknown cause at the time of diagnosis.

    Get PDF
    BACKGROUND AND PURPOSE:Patients with chronic focal epilepsy may have atrophy of brain structures important for the generation and maintenance of seizures. However, little research has been conducted in patients with newly diagnosed focal epilepsy (NDfE), despite it being a crucial point in time for understanding the underlying biology of the disorder. We aimed to determine whether patients with NDfE show evidence of volumetric abnormalities of subcortical structures. METHODS:Eighty-two patients with NDfE and 40 healthy controls underwent magnetic resonance imaging scanning using a standard clinical protocol. Volume estimation of the left and right hippocampus, thalamus, caudate nucleus, putamen and cerebral hemisphere was performed for all participants and normalised to whole brain volume. Volumes lower than two standard deviations below the control mean were considered abnormal. Volumes were analysed with respect to patient clinical characteristics, including treatment outcome 12聽months after diagnosis. RESULTS:Volume of the left hippocampus (p(FDR-corr) 聽=聽0.04) and left (p(FDR-corr) 聽=聽0.002) and right (p(FDR-corr) 聽=聽0.04) thalamus was significantly smaller in patients relative to controls. Relative to the normal volume limits in controls, 11% patients had left hippocampal atrophy, 17% had left thalamic atrophy and 9% had right thalamic atrophy. We did not find evidence of a relationship between volumes and future seizure control or with other clinical characteristics of epilepsy. CONCLUSIONS:Volumetric abnormalities of structures known to be important for the generation and maintenance of focal seizures are established at the time of epilepsy diagnosis and are not necessarily a result of the chronicity of the disorder

    Cortical overgrowth in fetuses with isolated ventriculomegaly.

    No full text
    Mild cerebral ventricular enlargement is associated with schizophrenia, autism, epilepsy, and attention-deficit/hyperactivity disorder. Fetal ventriculomegaly is the most common central nervous system (CNS) abnormality affecting 1% of fetuses and is associated with cognitive, language, and behavioral impairments in childhood. Neurodevelopmental outcome is partially predictable by the 2-dimensional size of the ventricles in the absence of other abnormalities. We hypothesized that isolated fetal ventriculomegaly is a marker of altered brain development characterized by relative overgrowth and aimed to quantify brain growth using volumetric magnetic resonance imaging (MRI) in fetuses with isolated ventriculomegaly. Fetal brain MRI (1.5 T) was performed in 60 normal fetuses and 65 with isolated ventriculomegaly, across a gestational age range of 22-38 weeks. Volumetric analysis of the ventricles and supratentorial brain structures was performed on 3-dimensional reconstructed datasets. Fetuses with isolated ventriculomegaly had increased brain parenchyma volumes when compared with the control cohort (9.6%, P < 0.0001) with enlargement restricted to the cortical gray matter (17.2%, P = 0.002). The extracerebral cerebrospinal fluid and third and fourth ventricles were also enlarged. White matter, basal ganglia, and thalamic volumes were not significantly different between cohorts. The presence of relative cortical overgrowth in fetuses with ventriculomegaly may represent the neurobiological substrate for cognitive, language, and behavioral deficits in these children

    Stress-Associated Molecular and Cellular Hippocampal Mechanisms Common for Epilepsy and Comorbid Depressive Disorders

    No full text
    corecore