162 research outputs found

    Green's-function theory of the Heisenberg ferromagnet in a magnetic field

    Full text link
    We present a second-order Green's-function theory of the one- and two-dimensional S=1/2 ferromagnet in a magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced and determined by exact relations. The transverse and longitudinal spin correlation functions and thermodynamic properties (magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are performed. A good agreement of the Green's-function theory with the exact data, with recent quantum Monte Carlo results, and with the spin polarization of a ν=1\nu=1 quantum Hall ferromagnet is obtained. The field dependences of the position and height of the maximum in the temperature dependence of the susceptibility are found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in Landau's theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory provides an improved description of magnetic short-range order as compared with the random phase approximation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-temperature maximum are described by power laws. At higher fields in one and two dimensions, the temperature of the specific heat maximum linearly increases with the field.Comment: 9 pages, 9 figure

    Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagome lattice

    Full text link
    We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagome lattice by using a spin-rotation-invariant Green's-function method. Since the pure two-dimensional kagome antiferromagnet is most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of kagome layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign and the strength of the interlayer coupling

    Using Goal- and Grip-Related Information for Understanding the Correctness of Other’s Actions: An ERP Study

    Get PDF
    Detecting errors in other’s actions is of pivotal importance for joint action, competitive behavior and observational learning. Although many studies have focused on the neural mechanisms involved in detecting low-level errors, relatively little is known about error-detection in everyday situations. The present study aimed to identify the functional and neural mechanisms whereby we understand the correctness of other’s actions involving well-known objects (e.g. pouring coffee in a cup). Participants observed action sequences in which the correctness of the object grasped and the grip applied to a pair of objects were independently manipulated. Observation of object violations (e.g. grasping the empty cup instead of the coffee pot) resulted in a stronger P3-effect than observation of grip errors (e.g. grasping the coffee pot at the upper part instead of the handle), likely reflecting a reorienting response, directing attention to the relevant location. Following the P3-effect, a parietal slow wave positivity was observed that persisted for grip-errors, likely reflecting the detection of an incorrect hand-object interaction. These findings provide new insight in the functional significance of the neurophysiological markers associated with the observation of incorrect actions and suggest that the P3-effect and the subsequent parietal slow wave positivity may reflect the detection of errors at different levels in the action hierarchy. Thereby this study elucidates the cognitive processes that support the detection of action violations in the selection of objects and grips

    Fatal disseminated Toxoplasma gondii infection in a captive harbour porpoise (Phocoena phocoena)

    Get PDF
    A 7-year-old female harbour porpoise (Phocoena phocoena), born and held in captivity, suffered from reduced consciousness, imprecise and circling swimming movements and long phases of immobility over a period of 3 weeks. The animal died during treatment in a Danish open sea facility. Pathological examination revealed multifocal pyogranulomatous to necrotizing meningoencephalomyelitis, ganglioneuritis, plexus chorioiditis, myocarditis, hepatitis and adrenalitis with few intralesional protozoal tachyzoites and bradyzoites within cysts. Immunohistochemistry was positive for Toxoplasma gondii antigen within the lesions. Using polymerase chain reaction (PCR), the presence of T. gondii-specific genome fragments was confirmed. A multilocus PCR-restriction fragment length polymorphism analysis using nine unlinked marker regions (nSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) resulted in the identification of T. gondii type II (variant Apico Type I), which is the T. gondii genotype dominating in Germany. This is the first description of disseminated fatal toxoplasmosis in a captive harbour porpoise that lived in an open sea basin. Surface water contaminated with toxoplasma oocysts is regarded as the most likely source of infection

    Conceptual knowledge for understanding other’s actions is organized primarily around action goals

    Get PDF
    Semantic knowledge about objects entails both knowing how to grasp an object (grip-related knowledge) and what to do with an object (goal-related knowledge). Considerable evidence suggests a hierarchical organization in which specific hand-grips in action execution are most often selected to accomplish a remote action goal. The present study aimed to investigate whether a comparable hierarchical organization of semantic knowledge applies to the recognition of other’s object-directed actions as well. Correctness of either the Grip (hand grip applied to the object) or the Goal (end-location at which an object was directed) were manipulated independently in two experiments. In Experiment 1, subjects were required to attend selectively to either the correctness of the grip or the goal of the observed action. Subjects were faster when attending to the goal of the action and a strong interference of goal-violations was observed when subjects attended to the grip of the action. Importantly, observation of irrelevant goal- or grip-related violations interfered with making decisions about the correctness of the relevant dimension only when the relevant dimension was correct. In contrast, in Experiment 2, when subjects attended to an action-irrelevant stimulus dimension (i.e. orientation of the object), no interference of goal- or grip-related violations was found, ruling out the possibility that interference-effects result from perceptual differences between stimuli. These findings suggest that understanding the correctness of an action selectively recruits specialized, but interacting networks, processing the correctness of goal- and grip-specific information during action observation

    Thermodynamics of Heisenberg ferromagnets with arbitrary spin in a magnetic field

    Full text link
    The thermodynamic properties (magnetization, magnetic susceptibility, transverse and longitudinal correlation lengths, specific heat) of one- and two-dimensional ferromagnets with arbitrary spin S in a magnetic field are investigated by a second-order Green-function theory. In addition, quantum Monte Carlo simulations for S= 1/2 and S=1 are performed using the stochastic series expansion method. A good agreement between the results of both approaches is found. The field dependence of the position of the maximum in the temperature dependence of the susceptibility fits well to a power law at low fields and to a linear increase at high fields. The maximum height decreases according to a power law in the whole field region. The longitudinal correlation length may show an anomalous temperature dependence: a minimum followed by a maximum with increasing temperature. Considering the specific heat in one dimension and at low magnetic fields, two maxima in its temperature dependence for both the S= 1/2 and S = 1 ferromagnets are found. For S>1 only one maximum occurs, as in the two-dimensional ferromagnets. Relating the theory to experiments on the S= 1/2 quasi-one-dimensional copper salt TMCuC [(CH_3)_4NCuCl_3], a fit to the magnetization as a function of the magnetic field yields the value of the exchange energy which is used to make predictions for the occurrence of two maxima in the temperature dependence of the specific heat.Comment: 17 pages, 19 figures, submitted to Phys. Rev.

    Supernatural belief is not modulated by intuitive thinking style or cognitive inhibition

    Get PDF
    According to the Intuitive Belief Hypothesis, supernatural belief relies heavily on intuitive thinking—and decreases when analytic thinking is engaged. After pointing out various limitations in prior attempts to support this Intuitive Belief Hypothesis, we test it across three new studies using a variety of paradigms, ranging from a pilgrimage field study to a neurostimulation experiment. In all three studies, we found no relationship between intuitive or analytical thinking and supernatural belief. We conclude that it is premature to explain belief in gods as ‘intuitive’, and that other factors, such as socio-cultural upbringing, are likely to play a greater role in the emergence and maintenance of supernatural belief than cognitive style

    Joint action modulates motor system involvement during action observation in 3-year-olds

    Get PDF
    When we are engaged in a joint action, we need to integrate our partner’s actions with our own actions. Previous research has shown that in adults the involvement of one’s own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor. The aim of this study was to investigate whether similar motor system involvement is present at early stages of joint action development and whether it is related to joint action performance. In an EEG experiment with 3-year-old children, we assessed the children’s brain activity and performance during a joint game with an adult experimenter. We used a simple button-pressing game in which the two players acted in turns. Power in the mu- and beta-frequency bands was compared when children were not actively moving but observing the experimenter’s actions when (1) they were engaged in the joint action game and (2) when they were not engaged. Enhanced motor involvement during action observation as indicated by attenuated sensorimotor mu- and beta-power was found when the 3-year-olds were engaged in the joint action. This enhanced motor activation during action observation was associated with better joint action performance. The findings suggest that already in early childhood the motor system is differentially activated during action observation depending on the involvement in a joint action. This motor system involvement might play an important role for children’s joint action performance

    An examination of the factorial and convergent validity of four measures of conspiracist ideation, with recommendations for researchers

    Get PDF
    A number scales have been developed to measure conspiracist ideation, but little attention has been paid to the factorial validity of these scales. We reassessed the psychometric properties of four widely-used scales, namely the Belief in Conspiracy Theories Inventory (BCTI), the Conspiracy Mentality Questionnaire (CMQ), the Generic Conspiracist Beliefs Scale (GCBS), and the One-Item Conspiracy Measure (OICM). Eight-hundred-and-three U. S. adults completed all measures, along with measures of endorsement of 9/11 and anti- vaccination conspiracy theories. Through both exploratory and confirmatory factor analysis, we found that only the BCTI had acceptable factorial validity. We failed to confirm the factor structures of the CMQ and the GBCS, suggesting these measures had poor factorial valid- ity. Indices of convergent validity were acceptable for the BCTI, but weaker for the other measures. Based on these findings, we provide suggestions for the future refinement in the measurement of conspiracist ideation
    corecore