14 research outputs found

    Quantitative methods for electron energy loss spectroscopy

    Get PDF
    [spa] Este trabajo explora las posibilidades analíticas que ofrece la técnica de espectroscopia electrónica de bajas pérdidas (low-loss EELS), capaces de revelar la configuración estructural de los más avanzados dispositivos semiconductores. El uso de modernos microscopios electrónicos de transmisión-barrido (STEM) nos permite obtener información espectroscópica a partir de volúmenes reducidos, hasta llegar a resolución atómica. Por ello, EELS es cada vez mas popular para la observación de los dispositivos semiconductores, a medida que los tamaños característicos de sus estructuras constituyentes se miniaturiza. Los espectros de pérdida de energía contienen mucha información: dado que el haz de electrones sufre unos bien conocidos procesos de dispersión inelástica, podemos trazar relaciones entre estos espectros y excitaciones elementales en la configuración atómica de los elementos y compuestos constituyentes de cada material. Se describe un marco teórico para el estudio del low-loss EELS: el modelo dieléctrico de dispersión inelástica, que toma en consideración las propiedades electrodinámicas del haz de electrones y la descripción mecano-cuántica de los materiales. Adicionalmente, se describen en detalle las herramientas utilizadas en el análisis de datos experimentales o la simulación teórica de espectros. Monitorizando las energías de band gap y plasmon en los datos experimentales de low-loss EELS se obtiene información directa sobre propiedades electrónicas de los materiales. Además, usando análisis Kramers-Kronig en los espectros se obtiene información dieléctrica que puede ser comparada con las simulaciones o con otras técnicas (ópticas). Se demuestra el uso de estas herramientas con una serie de estudios sobre estructuras basadas en nitruros del grupo-III. Por otro lado, el uso de algoritmos para el análisis multivariante permite separar las contribuciones individuales que se miden mezcladas en espectros de estructuras complicadas. Hemos utilizado estas avanzadas herramientas para el análisis de estructuras basadas en silicio que contienen nano-cristales embebidos en matrices dieléctricas.[eng] This thesis explores the analytical capabilities of low-loss electron energy loss spectroscopy (EELS), applied to disentangle the intimate configuration of advanced semiconductor heterostructures. Modern aberration corrected scanning transmission electron microscopy (STEM) allows extracting spectroscopic information from extremely constrained areas, down to atomic resolution. Because of this, EELS is becoming increasingly popular for the examination of novel semiconductor devices, as the characteristic size of their constituent structures shrinks. Energy-loss spectra contain a high amount of information, and since the electron beam undergoes well-known inelastic scattering processes, we can trace the features in these spectra down to elementary excitations in the atomic electronic configuration. In Chapter 1, the general theoretical framework for low-loss EELS is described. This formulation, the dielectric model of inelastic scattering, takes into account the electrodynamic properties of the fast electron beam and the quantum mechanical description of the materials. Low-loss EELS features are originated both from collective mode (plasmons) and single electron excitations (e.g. band gap), that contain relevant chemical and structural information. The nature of these excitations and the inelastic processes involved has to be taken into account in order to analyze experimental data or to perform simulations. The computational tools required to perform these tasks are presented in Chapter 2. Among them, calibration, deconvolution and Kramers-Kronig analysis (KKA) of the spectrum constitute the most relevant procedures, that ultimately help obtain the dielectric information in the form of a complex dielectric function (CDF). This information may be then compared to the one obtained by optical techniques or with the results from simulations. Additional techniques are explained, focusing first on multivariate analysis (MVA) algorithms that exploit the hyperspectral acquisition of EELS, i.e. spectrum imaging (SI) modes. Finally, an introduction to the density functional theory (DFT) simulations of the energy-loss spectrum is given. In Chapter 3, DFT simulations concerning (Al, Ga, In)N binary and ternary compounds are introduced. The prediction of properties observed in low-loss EELS of these semiconductor materials, such as the band gap energy, is improved in these calculations. Moreover, a super-cell approach allows to obtain the composition dependence of both band gap and plasmon energies from the theoretical dielectric response coefficients of ternary alloys. These results are exploited in the two following chapters, in which we experimentally probe structures based on group-III nitride binary and ternary compounds. In Chapter 4, two distributed Bragg reflector structures are examined (based upon AlN/GaN and InAlN/GaN multilayers, respectively) through different strategies for the characterization of composition from plasmon energy shift. Moreover; HAADF image simulation is used to corroborate he obtained results; plasmon width, band gap energy and other features are measured; and, KKA is performed to obtain the CDF of GaN. In Chapter 5, a multiple InGaN quantum well (QW) structure is examined. In these QWs (indium rich layers of a few nanometers in width), we carry out an analysis of the energy-loss spectrum taking into account delocalization and quantum confinement effects. We propose useful alternatives complementary to the study of plasmon energy, using KKA of the spectrum. Chapters 6 and 7 deal with the analysis of structures that present pure silicon-nanocrystals (Si-NCs) embedded in silicon-based dielectric matrices. Our aim is to study the properties of these nanoparticles individually, but the measured low-loss spectrum always contains mixed signatures from the embedding matrix as well. In this scenario, Chapter 6 proposes the most straightforward solution; using a model-based fit that contains two peaks. Using this strategy, the Si-NCs embedded in an Er-doped SiO2 layer are characterized. Another strategy, presented in Chapter 7, uses computer-vision tools and MVA algorithms in low-loss EELS-SIs to separate the signature spectra of the Si-NCs. The advantages and drawbacks of this technique are revealed through its application to three different matrices (SiO2, Si3N4 and SiC). Moreover, the application of KKA to the MVA results is demonstrated, which allows to extract CDFs for the Si-NCs and surrounding matrices

    Insight into the compositional and structural nano features of AlN/GaN DBRs by EELS-HAADF

    Get PDF
    : III-V nitride ~AlGa!N distributed Bragg reflector devices are characterized by combined high-angle annular dark-field ~HAADF! and electron energy loss spectroscopy ~EELS! in the scanning transmission electron microscope. Besides the complete structural characterization of the AlN and GaN layers, the formation of AlGaN transient layers is revealed using Vegard law on profiles of the position of the bulk plasmon peak maximum. This result is confirmed by comparison of experimental and simulated HAADF intensities. In addition, we present an advantageous method for the characterization of nano-feature structures using low-loss EELS spectrum image ~EEL-SI! analysis. Information from the materials in the sample is extracted from these EEL-SI at high spatial resolution.The log-ratio formula is used to calculate the relative thickness, related to the electron inelastic mean free path. Fitting of the bulk plasmon is performed using a damped plasmon model ~DPM! equation. The maximum of this peak is related to the chemical composition variation using the previous Vegard law analysis. In addition, within the context of the DPM, information regarding the structural properties of the material can be obtained from the lifetime of the oscillation. Three anomalous segregation regions are characterized, revealing formation of metallic Al islands

    Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS

    Get PDF
    We present a detailed examination of a multiple InxGa1−xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks

    EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis

    Full text link
    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to FexCo(3-x)O4@Co3O4 mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D

    Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions

    Get PDF
    Electron energy-loss spectroscopy-spectrum image (EELS-SI) tomography is a powerful tool to investigate the three dimensional chemical configuration in nanostructures. Here, we demonstrate, for the first time, the possibility to characterize the spatial distribution of Fe and Co cations in a complex FexCo(3-x)O4/Co3O4 ordered mesoporous system. This hybrid material is relevant because of the ferrimagnetic/antiferromagnetic coupling and high surface area. We unambiguously prove that the EELS-SI tomography shows a sufficiently high resolution to simultaneously unravel the pore structure and the chemical signal

    3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography.

    Get PDF
    Left panel shows the explained variance ratio of the principal component analysis (PCA) decomposition. The six first components, which are enough to explain the whole data set, are plotted in the right panel. Components 0, 3 and 5 show no remarkable features in the Fe L2,3 ionization energy and seem rather related to the background of the spectra due to their power-law behaviour, while component 1 is almost constant and therefore could be related to the dark noise in the detector

    Quantitative methods for electron energy loss spectroscopy

    No full text
    This thesis explores the analytical capabilities of low-loss electron energy loss spectroscopy (EELS), applied to disentangle the intimate configuration of advanced semiconductor heterostructures. Modern aberration corrected scanning transmission electron microscopy (STEM) allows extracting spectroscopic information from extremely constrained areas, down to atomic resolution. Because of this, EELS is becoming increasingly popular for the examination of novel semiconductor devices, as the characteristic size of their constituent structures shrinks. Energy-loss spectra contain a high amount of information, and since the electron beam undergoes well-known inelastic scattering processes, we can trace the features in these spectra down to elementary excitations in the atomic electronic configuration. In Chapter 1, the general theoretical framework for low-loss EELS is described. This formulation, the dielectric model of inelastic scattering, takes into account the electrodynamic properties of the fast electron beam and the quantum mechanical description of the materials. Low-loss EELS features are originated both from collective mode (plasmons) and single electron excitations (e.g. band gap), that contain relevant chemical and structural information. The nature of these excitations and the inelastic processes involved has to be taken into account in order to analyze experimental data or to perform simulations. The computational tools required to perform these tasks are presented in Chapter 2. Among them, calibration, deconvolution and Kramers-Kronig analysis (KKA) of the spectrum constitute the most relevant procedures, that ultimately help obtain the dielectric information in the form of a complex dielectric function (CDF). This information may be then compared to the one obtained by optical techniques or with the results from simulations. Additional techniques are explained, focusing first on multivariate analysis (MVA) algorithms that exploit the hyperspectral acquisition of EELS, i.e. spectrum imaging (SI) modes. Finally, an introduction to the density functional theory (DFT) simulations of the energy-loss spectrum is given. In Chapter 3, DFT simulations concerning (Al, Ga, In)N binary and ternary compounds are introduced. The prediction of properties observed in low-loss EELS of these semiconductor materials, such as the band gap energy, is improved in these calculations. Moreover, a super-cell approach allows to obtain the composition dependence of both band gap and plasmon energies from the theoretical dielectric response coefficients of ternary alloys. These results are exploited in the two following chapters, in which we experimentally probe structures based on group-III nitride binary and ternary compounds. In Chapter 4, two distributed Bragg reflector structures are examined (based upon AlN/GaN and InAlN/GaN multilayers, respectively) through different strategies for the characterization of composition from plasmon energy shift. Moreover; HAADF image simulation is used to corroborate he obtained results; plasmon width, band gap energy and other features are measured; and, KKA is performed to obtain the CDF of GaN. In Chapter 5, a multiple InGaN quantum well (QW) structure is examined. In these QWs (indium rich layers of a few nanometers in width), we carry out an analysis of the energy-loss spectrum taking into account delocalization and quantum confinement effects. We propose useful alternatives complementary to the study of plasmon energy, using KKA of the spectrum. Chapters 6 and 7 deal with the analysis of structures that present pure silicon-nanocrystals (Si-NCs) embedded in silicon-based dielectric matrices. Our aim is to study the properties of these nanoparticles individually, but the measured low-loss spectrum always contains mixed signatures from the embedding matrix as well. In this scenario, Chapter 6 proposes the most straightforward solution; using a model-based fit that contains two peaks. Using this strategy, the Si-NCs embedded in an Er-doped SiO2 layer are characterized. Another strategy, presented in Chapter 7, uses computer-vision tools and MVA algorithms in low-loss EELS-SIs to separate the signature spectra of the Si-NCs. The advantages and drawbacks of this technique are revealed through its application to three different matrices (SiO2, Si3N4 and SiC). Moreover, the application of KKA to the MVA results is demonstrated, which allows to extract CDFs for the Si-NCs and surrounding matrices.Este trabajo explora las posibilidades analíticas que ofrece la técnica de espectroscopia electrónica de bajas pérdidas (low-loss EELS), capaces de revelar la configuración estructural de los más avanzados dispositivos semiconductores. El uso de modernos microscopios electrónicos de transmisión-barrido (STEM) nos permite obtener información espectroscópica a partir de volúmenes reducidos, hasta llegar a resolución atómica. Por ello, EELS es cada vez mas popular para la observación de los dispositivos semiconductores, a medida que los tamaños característicos de sus estructuras constituyentes se miniaturiza. Los espectros de pérdida de energía contienen mucha información: dado que el haz de electrones sufre unos bien conocidos procesos de dispersión inelástica, podemos trazar relaciones entre estos espectros y excitaciones elementales en la configuración atómica de los elementos y compuestos constituyentes de cada material. Se describe un marco teórico para el estudio del low-loss EELS: el modelo dieléctrico de dispersión inelástica, que toma en consideración las propiedades electrodinámicas del haz de electrones y la descripción mecano-cuántica de los materiales. Adicionalmente, se describen en detalle las herramientas utilizadas en el análisis de datos experimentales o la simulación teórica de espectros. Monitorizando las energías de band gap y plasmon en los datos experimentales de low-loss EELS se obtiene información directa sobre propiedades electrónicas de los materiales. Además, usando análisis Kramers-Kronig en los espectros se obtiene información dieléctrica que puede ser comparada con las simulaciones o con otras técnicas (ópticas). Se demuestra el uso de estas herramientas con una serie de estudios sobre estructuras basadas en nitruros del grupo-III. Por otro lado, el uso de algoritmos para el análisis multivariante permite separar las contribuciones individuales que se miden mezcladas en espectros de estructuras complicadas. Hemos utilizado estas avanzadas herramientas para el análisis de estructuras basadas en silicio que contienen nano-cristales embebidos en matrices dieléctricas

    Extrinsic Localized Excitons in Patterned 2D Semiconductors

    Get PDF
    A new localized excitonic state is demonstrated in patterned monolayer 2D semiconductors. The signature of an exciton associated with that state is observed in the photoluminescence spectrum after electron beam exposure of several 2D semiconductors. The localized state, which is distinguished by non-linear power dependence, survives up to room temperature and is patternable down to 20 nm resolution. The response of the new exciton to the changes of electron beam energy, nanomechanical cleaning, and encapsulation via multiple microscopic, spectroscopic, and computational techniques is probed. All these approaches suggest that the state does not originate from irradiation-induced structural defects or spatially non-uniform strain, as commonly assumed. Instead, it is shown to be of extrinsic origin, likely a charge transfer exciton associated with the organic substance deposited onto the 2D semiconductor. By demonstrating that structural defects are not required for the formation of localized excitons, this work opens new possibilities for further understanding of localized excitons as well as their use in applications that are sensitive to the presence of defects, e.g. chemical sensing and quantum technologies

    (V)EELS characterization of InAlN/GaN distributed Bragg reflectors

    No full text
    High resolution monochromated Electron Energy Loss Spectroscopy (EELS) at subnanometric spatial resolution and <200 meV energy resolution has been used to assess the valence band properties of a distributed Bragg reflector (DBR) multilayer heterostructure composed of InAlN lattice matched to GaN. This work thoroughly presents the collection of methods and computational tools put together for this task. Among these are zero-loss-peak subtraction and non-linear fitting tools, and theoretical modeling of the electron scattering distribution. EELS analysis allows to retrieve a great amount of information: Indium concentration in the InAlN layers is monitored through the local plasmon energy position, and calculated using a bowing parameter version of Vegard Law. Also a dielectric characterization of the InAlN and GaN layers has been performed through Kramers-Kronig analysis of the Valence-EELS data, allowing band gap energy to be measured and an insight on the polytypism of the GaN layers

    Insight into the compositional and structural nano features of AlN/GaN DBRs by EELS-HAADF

    No full text
    : III-V nitride ~AlGa!N distributed Bragg reflector devices are characterized by combined high-angle annular dark-field ~HAADF! and electron energy loss spectroscopy ~EELS! in the scanning transmission electron microscope. Besides the complete structural characterization of the AlN and GaN layers, the formation of AlGaN transient layers is revealed using Vegard law on profiles of the position of the bulk plasmon peak maximum. This result is confirmed by comparison of experimental and simulated HAADF intensities. In addition, we present an advantageous method for the characterization of nano-feature structures using low-loss EELS spectrum image ~EEL-SI! analysis. Information from the materials in the sample is extracted from these EEL-SI at high spatial resolution.The log-ratio formula is used to calculate the relative thickness, related to the electron inelastic mean free path. Fitting of the bulk plasmon is performed using a damped plasmon model ~DPM! equation. The maximum of this peak is related to the chemical composition variation using the previous Vegard law analysis. In addition, within the context of the DPM, information regarding the structural properties of the material can be obtained from the lifetime of the oscillation. Three anomalous segregation regions are characterized, revealing formation of metallic Al islands
    corecore