97 research outputs found

    Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs

    Get PDF
    Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations

    Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation

    Get PDF
    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease

    The role of p75NTR in cholinergic basal forebrain structure and function

    Get PDF
    The role of the p75 neurotrophin receptor (p75NTR) in adult cholinergic basal forebrain (cBF) neurons is unclear due to conflicting results from previous studies and to limitations of existing p75NTR-knock-out mouse models. In the present study we used a novel conditional knock-out line (ChAT-cre p75in/in) to assess the role of p75NTR in the cBF by eliminating p75NTR in choline acetyl-transferase-expressing cells. We show that the absence of p75NTR results in a lasting increase in cBF cell number, cell size, and cholinergic innervation to the cortex. Analysis of adult ChAT-cre p75in/in mice revealed that mutant animals show a similar loss of cBF neurons with age to that observed in wild-type animals, indicating that p75NTR does not play a significant role in mediating this age-related decline in cBF neuronal number. However, the increased cholinergic axonal innervation of the cortex, but not the hippocampus, corresponded to alterations in idiothetic but not allothetic navigation. These findings support a role for p75NTR-mediated regulation of cholinergic-dependent cognitive function, and suggest that the variability in previous reports of cBF neuron number may stem from limited spatial and temporal control of p75NTR expression in existing knock-out models

    Comparative study of CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts in the CO-PROX reaction

    Get PDF
    CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied

    Longitudinal trajectories of basal forebrain volume in normal aging and Alzheimer\u27s disease

    Get PDF
    Dysfunction of the cholinergic basal forebrain (BF) system and amyloid- (A ) deposition are early pathological features in Alzheimer\u27s disease (AD). However, their association in early AD is not well-established. This study investigated the nature and magnitude of volume loss in the BF, over an extended period, in 516 older adults who completed A -PET and serial magnetic resonance imaging scans. Individuals were grouped at baseline according to the presence of cognitive impairment (CU, CI) and A status (A −, A +). Longitudinal volumetric changes in the BF and hippocampus were assessed across groups. The results indicated that high A levels correlated with faster volume loss in the BF and hippocampus, and the effect of A varied within BF subregions. Compared to CU A + individuals, A -related loss among CI A + adults was much greater in the predominantly cholinergic subregion of Ch4p, whereas no difference was observed for the Ch1/Ch2 region. The findings support early and substantial vulnerability of the BF and further reveal distinctive degeneration of BF subregions during early AD. © 2023 The Author(s

    Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model

    Get PDF
    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in similar to 25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; + 7.7%), mean diffusivity (MD; + 6.1%), axial diffusivity (AD; + 8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2) = 0.72), followed by MD (r(2) = 0.64), AD (r(2) = 0.64) and RD (r(2) = 0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or tractography parameters of the basal forebrain tracts. These findings provide increased support for using DTI and probabilistic tractography as non-invasive tools for diagnosing and/or monitoring the progression of conditions affecting the integrity of the basal forebrain cholinergic system in humans, including Alzheimer's disease. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved

    Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Independent Neuronal Cell Death

    Get PDF
    The lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2), synthesised by PIKfyve, regulates a number of intracellular membrane trafficking pathways. Genetic alteration of the PIKfyve complex, leading to even a mild reduction in PtdIns(3,5)P-2 results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that selectively inhibiting PIKfyve activity, using YM-201636, significantly reduces the survival of primary mouse hippocampal neurons in culture. YM-201636 treatment promoted vacuolation of endolysosomal membranes followed by apoptosis-independent cell death. Many vacuoles contained intravacuolar membranes and inclusions reminiscent of autolysosomes. Accordingly, YM-201636 treatment increased the level of the autophagosomal marker protein LC3-II, an effect that was potentiated by inhibition of lysosomal proteases, suggesting that alterations in autophagy could be a contributing factor to neuronal cell death

    The Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65

    Get PDF
    Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-κB, to the host cell nucleus. NF-κB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-κB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/I)K, that was important for both NleE- and OspZ-mediated inhibition of NF-κB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-κB activation. Whereas NleE inhibited both TNFα and IL-1β stimulated p65 nuclear translocation and IκB degradation, NleB inhibited the TNFα pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-κB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators
    • …
    corecore