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Abstract

The lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), synthesised by PIKfyve, regulates a number of intracellular
membrane trafficking pathways. Genetic alteration of the PIKfyve complex, leading to even a mild reduction in PtdIns(3,5)P2,
results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that
selectively inhibiting PIKfyve activity, using YM-201636, significantly reduces the survival of primary mouse hippocampal
neurons in culture. YM-201636 treatment promoted vacuolation of endolysosomal membranes followed by apoptosis-
independent cell death. Many vacuoles contained intravacuolar membranes and inclusions reminiscent of autolysosomes.
Accordingly, YM-201636 treatment increased the level of the autophagosomal marker protein LC3-II, an effect that was
potentiated by inhibition of lysosomal proteases, suggesting that alterations in autophagy could be a contributing factor to
neuronal cell death.
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Introduction

Phosphoinositides are important lipid regulators of membrane

trafficking and cellular signalling. Phosphatidylinositol 3,5-bispho-

sphate (PtdIns(3,5)P2) is synthesised by the Class III PtdIns-5-

kinase, PIKfyve. PIKfyve is part of an active complex regulating

PtdIns(3,5)P2 levels, which includes the lipid phosphatase Fig4 and

accessory protein Vac14 [1,2]. Despite being a minor component

of cellular lipids, PtdIns(3,5)P2 and/or PIKfyve has been

implicated in many cellular processes, including trafficking

through the endolysosomal system, exocytosis, ion channel

regulation and autophagy [3–10]. In mice, genetic ablation of

PIKfyve results in pre-implantation lethality [11], while mutations

or genetic ablation of Fig4 or Vac14 results in decreased levels of

PtdIns(3,5)P2 and a prominent vacuolar phenotype in the central

nervous system, accompanied by marked spongiform degeneration

[12,13]. In humans, mutations in Fig4 are causative of Charcot-

Marie-Tooth disease type 4J [12] and are associated with forms of

amyotrophic lateral sclerosis [14]. Targeted re-expression of Fig4

in neurons of Fig42/2 mice clearly demonstrates a primary role

for neuronal PIKfyve activity in preventing spongiform de-

generation [15].

Despite the above lines of evidence, little is known of the

mechanisms underlying neuronal cell death in response to

disruption of PIKfyve activity. In Fig4 and Vac14 mutant mice,

neuronal cell death appears to be preceded by cellular vacuolation

[12,13]. Moreover, cultured Fig42/2 cerebellar neurons are

highly vacuolated. This vacuolation is reminiscent of that observed

in non-neuronal cell lines, where interfering with PIKfyve activity

results in the swelling of endocytic compartments and disruption of

endomembrane transport [3,6,16,17]. Macroautophagy (hereafter

referred to as autophagy) has been implicated in neuronal survival

and in the pathogenesis of a number of neurodegenerative diseases

[18,19]. Furthermore, in the Fig42/2 mouse brain, an increase in

the levels of the autophagy marker protein LC3-II, together with

the autophagy chaperone protein p62, has been interpreted as

a block in the completion of autophagy [20]. Interestingly,

targeted re-expression of Fig4 in glia, but not neurons, of Fig42/

2 mice, prevents the accumulation of autophagy markers but does

not rescue the spongiform degeneration [15]. To date, the

importance of PIKfyve activity in facilitating autophagy in neurons

remains unclear.

To provide further insight into the mechanism by which

reduced levels of PtdIns(3,5)P2 leads to neuronal cell death, we

used the PIKfyve inhibitor YM-201636 [6], at a concentration

known to induce cellular vacuolation through an effect on

PtdIns(3,5)P2 levels [21]. We demonstrate that directly inhibiting

PIKfyve kinase activity causes vacuolation and neuronal cell death

via a caspase-independent mechanism, and is associated with

alterations in autophagy. Our data point to a fundamental
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Figure 1. YM-201636 promotes an apoptosis-independent cell death in cultured primary hippocampal neurons. (A) Primary
hippocampal neurons were treated for 24 h with DMSO or 1 mM YM-201636 with and without 30 mM Z-VAD-fmk and imaged by brightfield
microscopy. (B) Quantitation of neuronal survival following 24 h treatment with DMSO or 1 mM YM-201636 with and without 30 mM Z-VAD-fmk (ZVF),
n = 12 fields of cells, 3 independent experiments. (C) Primary hippocampal neurons were treated for 4 h or 18 h with DMSO, 1 mM YM-201636 or
500 nM staurosporine and immunoblotted for cleaved caspase-3 and b-actin. (D) Primary hippocampal neurons were treated for 4 h with DMSO,
500 nM staurosporine with and without 30 mM ZVF, 30 mM ZVF or 1 mM YM-201636 and immunoblotted for cleaved caspase-3 and b-actin. (E-H)
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requirement for PtdIns(3,5)P2 in the survival and development of

hippocampal neurons, and suggest that alterations in the

regulation of the autophagosomal system could contribute to the

mechanism of neuronal cell death observed upon PIKfyve

inhibition.

Materials and Methods

Antibodies and Reagents
Antibodies were obtained from the following sources: rabbit

anti-LC3 (Novus Biologicals, NB100-2331), mouse anti-ß-actin

(Sigma, S0644), mouse anti-ßIII tubulin (Covance, MMS-435P),

rabbit anti-EEA1 (#2411) and rabbit anti-cleaved caspase-3

(#9661) (Cell Signaling Technology), mouse anti-LAMP1/

LY1C6 (Sapphire Bioscience, #120-13523), rat anti-LAMP1/

CD107a (#553792), and mouse anti-GM130 (#610822) (BD

Biosciences). Fluorescently (Alexa Fluor)-tagged endocytic marker

proteins and secondary antibodies were obtained from Invitrogen.

Remaining reagents were obtained from Sigma unless stated

otherwise. ptfLC3 was generated in the laboratory of Prof

Tamotsu Yoshimori, Osaka University, Japan and obtained from

Addgene (Plasmid 21074; [22]).

Cell Culture and Neuronal Survival Assays
All animals received care in compliance with the Australian

code of practice for care and use of animals for scientific purposes,

and all experiments carried out were done so with approval from

the University of Queensland Animal Ethics Committee.

Cultured hippocampal neurons were prepared from embryonic

day 18 C57BL/6 mice and cultured in 45% DMEM/45% Hams

F12 containing 10% Neurocult (StemCell Technologies) and

3.75 ng/ml brain-derived neurotrophic factor (R&D Systems)

[23]. Briefly, embryos were collected in ice-cold Leibowitz’s 15

medium (Gibco), the brains removed and the hippocampus from

each hemisphere dissected out. Hippocampal tissue was digested

with 0.05% trypsin-EDTA for 10–15 min at 37uC then neutralised

with trypsin inhibitor and centrifuged at 104 g for 7 min. The cell

pellet was resuspended in medium, serially triturated through 19

gauge and 23 gauge needles, and passed through a 40 mm cell

strainer (BD Biosciences). Neurons were counted for viable cell

number, judged on their ability to exclude trypan blue.

For neuronal survival assays each well of a 4-well 3 cm Cell-

StarH plastic dish (Greiner) was etched with an 18 gauge needle to

define a 10610 grid, and the wells were coated with 0.1 mg/ml

poly-L-lysine. Neurons were plated at a density of 40,000 cells per

well and cultured as above except that the medium was

supplemented with 2 ng/ml brain-derived neurotrophic factor.

After 24 h the medium was replaced and one hour later neurons

were counted using relief contrast on an inverted Olympus 618X1

light microscope with CO2 incubation at room temperature. The

grid locations were noted for all neurons counted. Treatments

were then initiated as described in the results sections and after

24 h surviving neurons were counted from the same grid locations.

Surviving neurons were defined as showing no sign of blebbing or

extensive vacuolation, shrunken or apoptotic soma, or defective

formation of neuritic processes. Cell survival was calculated as

a percentage of starting cell numbers.

PC12 cells were maintained as described previously [8]. A

reporter PC12 cell line stably expressing the tfLC3 was generated

by lipid-based transfection (Lipofectamine LTX) and G418

selection, and fluorescence-activated cell sorting used to enrich

for cells with a low level of expression. The reporter cell line was

maintained in normal PC12 growth medium supplemented with

0.5 mg/ml G418.

Sample Preparation and Western Blotting
Primary hippocampal neurons were either solubilised directly in

SDS-PAGE sample buffer containing 25 mM DTT and protease

inhibitors, or solubilised in 20 mM Hepes pH 7.3, 150 mM NaCl,

2% Triton X-100 and protease inhibitors for 30 min at 4uC,

insoluble material removed by centrifugation and protein concen-

tration determined using a Bradford assay (Bio-Rad). 50 mg

protein was re-suspended in SDS-PAGE sample buffer. SDS-

PAGE and Western blot analysis was carried out as described

previously [8]. Blots were visualised and bands were quantified

using the Odyssey system (Licor).

Immunofluorescence Microscopy
Cells were fixed in 4% paraformaldehyde in phosphate-buffered

saline and processed for immunocytochemistry as described

previously [24,25]. Permeabilisation was performed using 0.1%

saponin (for EEA1) or 0.05% Triton X-100 (other antibodies).

Cells were imaged using a Zeiss LSM510 confocal microscope.

The uptake and trafficking of endocytic probes was carried out

using Alexa Fluor 555-conjugated proteins at the following

concentrations: 25 mg/ml transferrin, 5 mg/ml WGA, or 1 mg/

ml CTB. Cells were treated by adding 1 mM of YM-201636 or

DMSO for 4 h, and supplemented with the indicated probes for

either the entire 4 h duration, or the final 5 min, 30 min or 2 h of

treatment, as described in the results section. Cells were then

processed for immunocytochemistry as described above. Analysis

was carried out in either Fiji (NIH; [26]) or Imaris (Bitplane). All

images were processed using Adobe Photoshop CS3 and figures

compiled with Adobe Illustrator CS3.

Electron Microscopy
Primary hippocampal neurons were incubated in growth

medium with DMSO or 1 mM YM-201636 for 4 h or 22 h

respectively, rinsed briefly in PBS and fixed in 2.5% glutaralde-

hyde (Electron Microscopy Sciences). Fixed cells were contrasted

with 1% osmium tetroxide and 4% uranyl acetate prior to

dehydration and embedding in LX-112 resin [27]. Sections

(50 nm) were cut using an ultramicrotome (UC64; Leica). To

analyse endocytosis WGA-HRP was included in the growth

medium at 10 mg/ml for the entire period of PIKfyve inhibition

(4 h) or for the final 30 min, as described in the results section.

Following fixation, cells were processed for 3,39-diaminobenzidine

(DAB) cytochemistry using standard protocols, prior to contrast-

ing, dehydration and embedding as described above. All images

were processed using Adobe Photoshop CS3 and figures compiled

with Adobe Illustrator CS3.

To quantify vacuole formation, cell bodies with a clearly visible

nucleus were visualised at 60006 using a transmission electron

microscope (model 1011; JEOL) equipped with a Morada cooled

CCD camera. A 1 mm square lattice grid was overlaid on the

section using the iTEM AnalySIS software. Grid intersections that

fell on vacuoles or cytosol were recorded and used to determine

the relative vacuole area.

Primary hippocampal neurons were imaged for 48 h in real time using brightfield microscopy and analysed for total neurite length (E) and neurite
length per neuron (F) (n = 20 fields in total from 4 wells of cells) or the percentage of dead (G) or vacuolated (H) cells (n = 4 wells). All results show
mean 6 SEM. Circle =DMSO, Square = YM-201636. The level of significance is shown relative to DMSO, *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0060152.g001
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Figure 2. YM-201636 promotes vacuolation and endosomal compartments in hippocampal neurons. (A) Primary hippocampal neurons
were treated with DMSO or 1 mM YM-201636 for 4 h and processed for electron microscopy. Images show neuronal cell bodies at the level of the
nucleus, demonstrating vacuolation in the presence of YM-201636. Grid size = 1 mm square. (B-D) Electron microscopic analysis of the vacuole area as
a percentage of total cytoplasmic area (B) and the number of vacuoles per cell (C) shows a significant increase in vacuole size and number following
4 h treatment with 1 mM YM-201636, **p,0.01, ***p,0.001. (D) Histogram of number of vacuoles relative to their size (representative experiment),
n = 12 (DMSO) or 11 (YM-201636) cells. (E) Examples of vacuole phenotypes detected in primary hippocampal neurons treated with 1 mM YM-201636
for 4 h. (F) Primary hippocampal neurons were treated with DMSO or 1 mM YM-201636 for 4 h or 18 h and immunolabelled for LAMP1, EEA1 and ß3-
tubulin. 3D projections are shown. Scale bar = 10 mm.
doi:10.1371/journal.pone.0060152.g002
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Statistical Analyses
Statistical significance was determined using a 2-tailed,

Student’s t-test assuming unequal variance, unless stated other-

wise. Results are shown as mean 6 SEM unless stated otherwise.

Results

PIKfyve Inhibition Results in Neuronal Cell Death in
Primary Hippocampal Neurons

Previous studies have shown that genetic manipulations of the

PIKfyve complex leading to reduced PtdIns(3,5)P2 levels promotes

vacuolation of neurons in vivo and in vitro, followed by neurode-

generation [1,12,13]. To investigate the mechanism contributing

to this neuronal cell death pathway, we used the specific PIKfyve

inhibitor YM-201636 in isolated hippocampal neurons. Neurons

were cultured for 2 days in the presence of brain-derived

neurotrophic factor prior to the addition of either DMSO (Movie

S1) or 1 mM YM-201636 (Movie S2), and imaged in real time for

a further 2 days. Time-lapse analysis showed that YM-201636

treatment led to vacuolation in primary hippocampal neurons and

failure to develop neurite networks. Importantly, YM-201636 also

promoted a decrease in the rate of neuronal survival. Quantitative

measurement of cell survival after 24 h showed a marked re-

duction of ,50% following PIKfyve inhibition (Figure 1A,B).

Together these data suggest that acute inhibition of PIKfyve

closely mimics the neuronal cell death phenotype observed in

Fig42/2 and Vac142/2 mice [1,12,13]. PIKfyve inhibition also

resulted in a similar phenotype (an early onset vacuolation

preceding cell death) in the small population of glial cells (mostly

astrocytes) present within the hippocampal cultures (Figure S1).

Apoptosis is a prevailing programmed cell death mechanism in

neurons and is activated in neurodegenerative conditions such as

Alzheimer’s disease [28,29]. To determine whether neuronal cell

death triggered by PIKfyve inhibition is underpinned by an

apoptotic process we examined both the production of activated

caspase-3 in response to YM-201636 treatment [30] and the

ability of the pan-caspase inhibitor, Z-VAD-fmk, to rescue YM-

201636-induced neuronal cell death (Figure 1A–D). Neuronal

cultures treated for 4 h or 18 h with YM-201636 showed no

increase in caspase-3 cleavage (Figure 1C). In contrast, the kinase

inhibitor staurosporine, a well-established inducer of apoptosis

[31], triggered a robust increase in caspase-3 cleavage within 4 h

and cell death within 18 h. Caspase-3 cleavage in response to

staurosporine could be blocked using Z-VAD-fmk (Figure 1D).

However, Z-VAD-fmk was unable to rescue neuronal death

caused by PIKfyve inhibition in the survival assay (Figure 1A–B).

Z-VAD-fmk alone had no effect on neuronal survival, cell

morphology or caspase-3 cleavage.

As we had also observed reduced neurites in YM-201636-

treated cells, we used neurite tracing to examine the development

of the neurite network (Figure 1E–F). While there was no

significant difference between control and treated cells for up to

4 h, control cells subsequently developed extensive neurite net-

works whereas YM-201636-treated cells did not. Examination of

neurite length per cell showed no significant difference between

control and treated cells, indicating that individual neurons

resistant to the inhibitor are able to form neurites normally. We

subsequently determined the time to onset of vacuolation and cell

death (Figure 1G,H). Vacuolation of the neurons first occurred

within 4 h of YM-201636 addition, preceding both cell death and

neurite loss, which predominantly occurred from 18–48 h. These

data demonstrate that PIKfyve inhibition promotes cell death in

primary hippocampal neurons through an apoptosis-independent

mechanism. Furthermore, as vacuolation of neurons was detected

well before neurite loss and cell death, our data suggest that altered

endolysosomal function could underlie the survival defect elicited

by PIKfyve inhibition.

PIKfyve Inhibition does not Affect Endocytosis but Alters
Endocytic Morphology and Endocytic Trafficking in
Primary Neurons

Previous studies have shown that deficiencies in PIKfyve activity

can affect different aspects of endosomal trafficking, including

transport to and from the late endosomal/lysosomal system,

autophagy and endocytosis [3,6,32]. Analysis of the time-lapse

imaging of neurons had demonstrated that the earliest detectable

phenotype, preceding cell death, was the appearance of enlarged

vacuoles. The nature of these vacuoles was initially examined by

electron microscopy. Analysis of control and YM-201636-treated

neurons demonstrated that PIKfyve inhibition for 4 h increased

both the number and size of electronlucent vacuoles in the cell

body and in neurites (Figure 2A–D). Quantification of vacuole

formation revealed that the cell body of control neurons contained

from 0–6 vacuoles, ranging from 200–1500 nm in diameter, with

the average total vacuole area comprising ,1% of the cell body.

In contrast, the cell bodies of YM-201636-treated neurons

contained an average of 14–18 vacuoles/cell, ranging in diameter

from 200–.4000 nm, and occupying an average of 10–13% of

the cell body (Figure 2B–D), although more highly vacuolated cells

were also observed (Figure 2A). Closer examination of vacuoles

formed following PIKfyve inhibition revealed varying morpholog-

ical features. Although the majority of vacuoles appeared largely

devoid of internal structures or only contained a few small internal

vesicles [16], approximately one third (35.8563.09%, n = 4

independent experiments, 6–12 cell profiles quantified/experi-

ment) contained intralumenal membranes and electron-dense

material, including membrane-bound intralumenal cytosolic

inclusions, consistent with an autophagic component (Figure 2E

[33]). To examine the possible effect of PIKfyve inhibition on the

formation of autophagosomes, the number of morphologically

identifiable canonical autophagic compartments was quantified.

The morphological criteria used to classify the compartments are

detailed in Figure S2. YM-201636 had no effect on the average

number of immature or degradative autophagosomes, suggesting

that inhibition of PIKfyve does not prevent autophagosome

formation. However, there was a highly significant decrease in the

number of electron-dense lysosomes detected (3.3360.38/cell

profile in DMSO-treated cells vs. 0.6060.21/cell profile in YM-

201636-treated cells, n = 4 independent experiments, 6–12 cell

Figure 3. The effect of YM-201636 on endosomal and retrograde trafficking in hippocampal neurons. (A) Primary hippocampal neurons
were treated with DMSO or 1 mM YM-201636 for 2 h then supplemented with 1 mg/ml CTB-Alexa555 for a further 2 h. Cells were fixed and
immunolabelled for GM130. Representative 3D projections are shown. (B) The integrated intensity (per mm2) of CTB-Alexa555 in Golgi complex, as
defined by GM130, the integrated intensity of GM130 and the size of the area analysed was measured and the percentage change between
conditions determined. (C) The change in total CTB-Alexa555 integrated intensity within the cell body and the area (mm2) of the cell body was
determined. (mean 6 SEM, n = 3 independent experiments, 11–20 cells per experiment). Significances relative to DMSO *p,0.05, **p,0.01,
***p,0.001 (D) Primary hippocampal neurons were treated with DMSO or 1 mM YM-201636 for 3.5 h then supplemented with 25 mg/ml transferrin-
Alexa555 (Tf-Alexa555) for a further 30 min. Cells were fixed and immunolabelled for LAMP1. Scale bar = 10 mm.
doi:10.1371/journal.pone.0060152.g003
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profiles/experiment, p,0.001). Together with the observed

phenotypes of the YM-201636-induced vacuoles, these data

suggest that inhibiting PIKfyve predominantly effects the matu-

ration of lysosomes and autolysosomes. This is in good agreement

with data from studies of PIKfyve function in C. elegans [32],

pointing to the accumulation of enlarged pre-lysosomal autopha-

gic and endocytic organelles.

To confirm that the vacuoles detected in neurons were derived

from the endolysosomal system, we analysed the localisation of the

early endosomal protein EEA1 and the lysosomal marker LAMP-1

Figure 4. Effect of YM-201636 on WGA trafficking by immunocytochemistry. Primary hippocampal neurons were treated with DMSO or
1 mM YM-201636 for 4 h, then supplemented with 5 mg/ml WGA-Alexa555 for the final 5 min (A,B) or 30 min (C,D). Cells were fixed, immunolabelled
for EEA1 and LAMP1, and imaged by confocal microscopy. (B,D) The intensity of WGA-Alexa555 per mm2 in the cell body and the total area of the cell
body were determined in the YM-201636–treated cells relative to DMSO. (E,F) Primary hippocampal neurons were treated with DMSO or 1 mM YM-
201636 in the presence of 5 mg/ml WGA-Alexa555 for the full 4 h. Cells were fixed, immunolabelled for GM130 and imaged by confocal microscopy.
(F) The amount of WGA-Alexa555 fluorescent intensity in the cell body/mm2 of the YM-2016363 treated cells was determined relative to DMSO. The
area of the cell bodies analysed was also determined (mean6 SEM, n = 3 independent experiments, 9–28 cells per experiment). Significances relative
to DMSO **p,0.01. Scale bar = 10 mm.
doi:10.1371/journal.pone.0060152.g004
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(Figure 2F) by immunofluorescence microscopy. While PIKfyve

inhibition resulted in a clear increase in the size of both

compartments, the majority of vacuoles were labelled for

LAMP-1, consistent with a dominant effect on lysosomes. Since

PIKfyve is known to aid in regulating traffic in the endosomal

system, we wanted to know whether there was a loss of identity

between early and late endosomes. The correlation between EEA1

and LAMP1 labelling was therefore examined using Pearson’s

correlation coefficient. Consistent with the localisation of these two

proteins to distinct intracellular compartments, in control cells we

found a very low level of correlation (0.0660.01). Following

treatment with YM-201636 we found that this correlation was

slightly decreased (-0.0260.03 and 20.0460.02 in 4 h and 18 h

YM-201636-treated cells, respectively, n = 3 independent experi-

ments, 6 images/experiment). This data suggest that following

inhibition of PIKfyve the identity of early and late endosomes is

maintained, and the reduction in correlation detected can be most

likely attributed to the redistribution of late endosomes and

lysosomes from the perinuclear region to a more dispersed

peripheral localisation [34].

As we had shown that inhibition of PIKfyve affects the size and

morphology of endosomal/pre-lysosomal compartments, we next

examined the effect of YM-201636 on endocytic trafficking in

neurons. Using markers of three distinct endocytic trafficking

pathways; retrograde transport to the Golgi complex (cholera

toxin B-subunit (CTB) [35]), endosomal recycling (transferrin (Tf)

[36]), or transport to the late endosomal system (wheatgerm

agglutinin (WGA)), we found no difference in the initial

endocytosis, although there were some mild changes in the

Figure 5. Ultrastructural analysis of the effect of YM-201636 on WGA trafficking. Primary hippocampal neurons were treated with (i)
DMSO for 3.5 h and 10 mg/ml WGA-HRP for a further 30 min, (ii, iv–vi) 1 mM YM-201636 for 3.5 h and 10 mg/ml WGA-HRP for a further 30 min or (iii)
1 mM YM-201636 and 10 mg/ml WGA-HRP for 4 h. Cells were fixed, processed for DAB cytochemistry and imaged by electron microscopy. (i) In DMSO-
treated cells WGA was identified in small vacuoles and vesicles. (ii) When WGA was added following inhibition of PIKfyve for 3.5 h, it was observed in
a subset (,45%) of large vacuoles. (iii) When WGA was continually present during the inhibition of PIKfyve, most (,90%) of vacuoles contained DAB
reaction product. (iv) Transport of WGA-HRP to the peri-Golgi region was unperturbed by treatment with YM-201636. (v) Vacuoles containing
endocytosed WGA-HRP were also detected in neurites (arrows). (vi) In most cases vacuoles containing WGA-HRP appeared devoid of internal
structures. g =Golgi complex, m=mitochondria, n-nucleus, V = vacuoles, pm=plasma membrane.
doi:10.1371/journal.pone.0060152.g005
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subsequent trafficking of these proteins by immunofluorescence

microscopy (Figure 3, 4).

CTB was endocytosed into the cell normally (Figure 3A,C),

however, a small but significant decrease in the amount that

colocalised with GM130 in the Golgi region was detected

(Figure 3A,B) suggesting partial inhibition in the latter steps of

retrograde trafficking. For both Tf and WGA, there was a clear

increase in the size of the endosomal compartments that these

Figure 6. PIKfyve and lysosomal proteases inhibition augments LC3-II levels in cultured hippocampal neurons. (A) Primary
hippocampal neurons were treated with DMSO or 1 mM YM-201636 for 4 h in the presence or absence of 10 mg/ml E64d and 10 mg/ml Pepstatin A.
Samples were prepared for SDS-PAGE and immunoblotted for LC3 and ß-actin. The levels of LC3-II (B) and LC3-I (C) were normalised to ß-actin and
quantified relative to DMSO alone. n = 4, mean 6 SEM, *p,0.05 paired 1-tailed t-test. (C) Primary hippocampal neurons were treated with 10 mg/ml
E64d/10 mg/ml Pepstatin A, 1 mM YM-201636 or 10 mg/ml E64d/10 mg/ml Pepstatin A +1 mM YM-201636 for 4 h, fixed and processed for electron
microscopy. In all cases enlarged endolysosomal compartments were observed, however while inhibition of lysosomal proteases resulted in the
formation of electron dense compartments with amorphous and membranous inclusions (arrows), inhibition of PIKfyve resulted in predominantly
electronlucent compartments (arrowheads). Size bars = 1 mm.
doi:10.1371/journal.pone.0060152.g006
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markers entered in YM-201636-treated cells, consistent with the

effect of PIKfyve inhibition on the morphology of the early and

late endosomes shown above. Transferrin normally recycles

through early endosomes back to the cell surface [36]. To

determine whether PIKfyve inhibition alters this trafficking

pathway, the level of colocalisation between Tf and LAMP1 was

determined (Figure 3D,E). Consistent with the decreased correla-

tion between EEA1 and LAMP1 (Figure 2), there was also

Figure 7. Processing of tf-LC3 in PC12 cells. (A) PC12/tfLC3 cells were treated for 24 h with 1 mM YM-201636 or DMSO, fixed and nuclei labelled
using DAPI. The distribution and fluorescence of GFP and RFP were analysed by confocal microscopy. (B) The number of autophagosomes
(determined by colabeling for GFP and RFP) was compared to the total number of RFP puncta, mean 6 SEM, ***p,0.001 (n = 16–18 images from 2
independent experiments).
doi:10.1371/journal.pone.0060152.g007
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a reduction in colocalisation between Tf and LAMP1 (from

0.2460.02 to 0.0960.03, n = 26–37 cells from 2 independent

experiments) following YM-201636 treatment. This data suggests

that Tf is not mis-targeted to LAMP1 compartments following

inhibition of PIKfyve, and is again consistent with the re-

distribution of LAMP1 compartments to more peripheral loca-

tions. Endocytosis of WGA also occurred normally with no change

in the total intensity in the cell body following 5 and 30 min

internalisation (Figure 4A–D). However, following a 4 h in-

cubation period, a small but significant increase in the intensity of

WGA was observed upon treatment with YM-201636

(Figure 4E,F). Inhibition of PIKfyve has been reported to prevent

maturation of lysosomes [32], which may inhibit the degradation

of WGA resulting in increased accumulation in late endosomal/

lysosomal compartments. Analysis of WGA trafficking by electron

microscopy revealed that in control cells endocytosed WGA-HRP

accumulated in small vesicular, tubulovesicular and vacuolar

(,0.5 mm) compartments, and was detected close to the Golgi

complex, consistent with its transport through the endolysosomal

system and retrograde traffic (Figure 5i). YM-201636 treatment for

4 h in the continual presence of WGA-HRP revealed that in

addition to vesicular structures and retrograde traffic, over 80% of

the enlarged vacuoles generated (.0.5 mm) also contained

endocytosed WGA, suggesting that most vacuoles were derived,

at least in part, from endocytic traffic (Figure 5iii). Furthermore,

when neurons were supplemented with WGA-HRP for the final

30 min of a 4 h YM-201636 treatment, a significant proportion

(,25–50%) of the vacuoles again contained endocytosed WGA,

demonstrating that traffic from the cell surface to a subset of

vacuoles was maintained despite the altered morphology

(Figure 5ii,iv–vi). Together these data suggest that the dominant

site of action of PIKfyve in primary cultured neurons lies at the

interface between prelysosomal and lysosomal compartments.

PIKfyve Inhibition Dysregulates Autophagy in Neurons
and Neuroendocrine Cells

While there was no change in the number of readily identifiable

autophagosomal compartments at steady state upon PIKfyve

inhibition, the morphology of a subset of the vacuolar compart-

ments clearly suggested an autophagic component (Figure 2E). We

therefore examined the effect of PIKfyve inhibition on microtu-

bule-associated protein light chain 3 (LC3), an autophagosomal

marker protein. The soluble form of LC3, LC3-I, undergoes post-

translational modification by an ubiquitination-like reaction, in

which an exposed C-terminal glycine is modified by phosphati-

dylethanolamine to generate the membrane-bound form, LC3-II,

the levels of which can be used to measure autophagy [37]. To

examine autophagy following PIKfyve inhibition, we measured

the amount of LC3-II after 4 h and 22 h treatment with YM-

201636. YM-201636-treated neurons exhibited a significant in-

crease in the level of LC3-II (Figure 6A,B), while no change in the

levels of LC3-I could be detected (Figure 6C). The increase in

LC3-II was detected within 4 h, correlating temporally with the

onset of vacuolation, and persisted through to 22 h, preceding the

onset of cell death (Figure S3). Since intralumenal LC3-II is

degraded by lysosomal proteases following fusion of the autopha-

gosome with the lysosome [37], determining the level of LC3-II in

the presence and absence of lysosomal protease activity can

provide information regarding the delivery of autophagosomal

content to the lysosome. As expected, inhibition of lysosomal

proteases by E64d and pepstatin A in control neurons resulted in

a significant increase in LC3-II levels (Figure 6A,B). Importantly,

concomitant inhibition of PIKfyve and lysosomal proteases

resulted in a further potentiation of LC3-II levels compared to

treatment with either YM-201636 or E64d/pepstatin A alone.

Importantly, inhibition of lysosomal proteases resulted in the

formation of highly enlarged lysosomal compartments morpho-

logically distinct from the vacuoles formed following PIKfyve

inhibition, while simultaneous inhibition of PIKfyve and lysosomal

proteases resulted in the concomitant formation of both types of

compartments (Figure 6D), strongly suggesting that the primary

affect of PIKfyve inhibition is not on lysosome proteolytic function.

Since autophagy is a multistep process requiring sequential

membrane trafficking and fusion reactions, the increased LC3-II

levels observed in neurons could stem from a requirement for

PIKfyve activity in one or more distinct regulatory steps including

i) de novo formation of autophagosomes, ii) the rate of consumption

of existing autophagosomes by the lysosomal system and/or iii)

processing of intralumenal LC3-II in the autolysosome. To begin

to investigate these individual steps, we used neurosecretory PC12

cells engineered to stably express the reporter construct GFP-RFP

tandem-fluorescent LC3 (tfLC3). tfLC3 can be used to distinguish

between autophagosomes (which retain GFP fluorescence) and

acidified autolysosomes (in which the external tfLC3 has

dissociated and the GFP tag of luminal tfLC3 is quenched by

the acidic pH) [22]. Inhibition of PIKfyve by YM-201636 in PC12

cells phenotypically mimicked the effect observed in hippocampal

neurons, including increased vacuolation as observed by electron

microscopy, and an increase in LC3-II (data not shown),

confirming that they were an appropriate model. Notably,

however, PC12 cell survival was not affected by YM-201636 over

a 24 h period, a difference that enabled us to further probe

potential autophagic trafficking defects. PC12/tfLC3 cells were

found to contain a large number of autophagosomes (Figure 6A),

identified by the presence of coincident GFP/RFP fluorescence, in

addition to autolysosomes, which displayed RFP fluorescence only

(Figure 7A). Following treatment with YM-201636 we found that

while the total number of RFP-positive autophagic compartments

was unaltered (43.0266.40/cell in DMSO-treated vs.

40.1765.03/cell in YM-201636-treated, n = 16–18 cells) there

was a highly significant reduction in the proportion of these

compartments that were also GFP positive (Figure 7B). This could

potentially be due to either a decrease in the de novo formation of

autophagosomes, an increase in the rate of consumption of

autophagosomes by the lysosomal system, or increased acidifica-

tion of prelysosomal, autophagic compartments. Together, these

data suggest that PIKfyve activity is an important regulator of

autophagy, however, they further suggest that PIKfyve activity

could be required at several distinct steps of the autophagic

process.

Discussion

In this study, we have used the PIKfyve inhibitor YM-201636 to

investigate the effects of acutely reducing PtdIns(3,5)P2 levels in

hippocampal neurons in culture. Consistent with studies in non-

neuronal cell lines [3,6,16,17], directly inhibiting PIKfyve activity

results in the swelling of endocytic compartments and disruption of

endomembrane transport, which in neurons precedes significant

levels of apoptosis-independent cell death. PIKfyve is known to

play a key role in the regulation of a number of cellular processes,

including trafficking through the endolysosomal system, exo-

cytosis, ion channel regulation and autophagy [3–8,10]. Despite

morphological alterations in the endolysosomal system, we found

that the endocytosis of marker proteins was largely unaffected. In

contrast, we observed significant dysregulation of the autophago-

somal and lysosomal systems, suggesting that alterations in the
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autophagic pathway in neurons could underlie the survival defect

that results from PIKfyve inhibition.

Endocytosis, Trafficking and Signalling
Vacuolation of cells upon disruption of PIKfyve activity,

whether by inhibitors, siRNA-mediated knock down or over-

expression of a dominant-negative kinase-dead PIKfyve, has been

reported in a variety of cell lines [3,16,17,34]. Consistent with

these results, one of the earliest phenotypes we detected upon

acute inhibition of PIKfyve in cultured hippocampal neurons was

the formation of numerous enlarged vacuoles. These vacuoles

labelled for markers of early endosomes (EEA1) and lysosomes

(LAMP1), indicating an endosomal origin, which is also consistent

with studies in non-neuronal cell lines [3,16,17,34]. Despite the

clear enlargement of endosomal compartments, their specific

characteristics (canonical resident protein distribution and traf-

ficking itineraries of receptors) appeared normal. However, there

were some notable differences in the endocytic trafficking, but not

endocytosis itself, of marker proteins including CTB and WGA.

These data are in good agreement with previous studies [3,16,17].

Consistent with studies in non-neuronal cells (17), we observed

a slight decrease in the amount of CTB undergoing retrograde

trafficking to the Golgi complex. Furthermore, WGA showed

increased intracellular accumulation after prolonged PIKfyve

inhibition consistent with the finding that lysosomal maturation

is blocked [32]. Whether PIKfyve inhibition specifically alters the

trafficking, targeting or silencing of neuronal survival signals is

currently unknown. However, previous studies of epidermal

growth factor receptor trafficking have shown PIKfyve inhibition

to have little [3], or no [16,17], effect on this pathway.

Furthermore, in D. melanogaster carrying mutations in the PIKfyve

homologue Fab1, the signalling and silencing of endocytosed cell

survival factors is unimpaired despite the altered endosomal

morphology [38]. Although these data suggest that neuronal cell

death is unlikely to result from alterations in the trafficking or

signalling of growth factors, a more targeted approach, specifically

looking at the trafficking of key survival factors will be needed to

further assess this possibility.

Neuronal Cell Death Mechanisms
The contribution of apoptotic cell death pathways to the

development of neurodegenerative diseases has been well char-

acterised [28,29]. However, less well understood is the contribu-

tion of alternative, non-apoptotic mechanisms including autopha-

gic cell death [39] and programmed necrosis (necroptosis) [40]. In

the current study, we have shown that neuronal cell death

associated with defective PIKfyve activity in cultured embryonic

hippocampal neurons is independent of caspase activity. This

suggests that the neurodegenerative phenotype observed in mice

deficient in Fig4 or Vac14, and in Charcot-Marie-Tooth disease

type 4J disease in humans, is unlikely to be mediated by apoptosis.

Rather our data and that of others [20] point towards

dysregulation of the autolysosomal system as a potential un-

derlying cause of neuronal death in vivo. Previous studies have

suggested direct links between the activity of PIKfyve and

dysregulation of autophagy in both mammalian cells [3,6] and

model organisms such as C. elegans and D. melanogaster [32,38,41].

Consistent with dysregulated autophagy in vivo, there is an increase

in LC3-II levels in the brains of Fig4-deficient and Vac14 mutant

mice [20], although the cellular origin of this was not investigated.

While our own studies point to a clear dysregulation of autophagy

in both neurons and neuroendocrine cells upon inhibition of

PIKfyve, we have additionally identified defects in the late

lysosomal system, suggesting that PIKfyve could act at multiple

points within the autolysosomal system. A more detailed dissection

of the individual trafficking steps affected by inhibition of PIKfyve

is warranted, as is an analysis of any secondary effects leading from

loss of PtdIns(3,5)P2.

Finally, it is also possible that in vivo, other mechanisms could be

contributing to the observed neuronal cell death in mice with

reduced levels of PtdIns(3,5)P2. For example, PIKfyve has been

implicated in the regulation of other neuronal process including

neurosecretion [8], protection from glutamate-induced excitotoxic

cell death by regulation of CaV1.2 degradation at the lysosome

[10], and the control of post-synaptic function through recycling of

AMPA receptors [42]. Furthermore, recent studies using targeted

re-expression of Fig4 into either neurons or glia of Fig42/2 mice

have shown that while loss of PIKfyve activity in neurons is

causative for spongiform degeneration, dysregulation of autophagy

is most associated with glial cells [15]. In the present study, we

have shown that inhibition of PIKfyve using the inhibitor YM-

201636 dysregulates autophagy and promotes neuronal cell death

in primary hippocampal neurons in culture. Future investigations

into the PtdIns(3,5)P2 effectors [43] promoting neuronal cell death

are warranted. The effect of PIKfyve inhibition in established

neuronal cultures remains to be determined. The possibility of off-

target effects of YM-201636 cannot be ruled out and further

studies using viral delivery methods to knockdown PIKfyve

expression will establish this.

In conclusion, our data point to a fundamental requirement for

PtdIns(3,5)P2 in the survival and development of hippocampal

neurons, and further suggest that alterations in the flux of material

through the autophagosomal/lysosomal system could contribute to

the mechanism of neuronal cell death observed in response to

PIKfyve inhibition. Further studies designed to delineate the

precise function(s) of PIKfyve in integrating regulation of the

endosomal and autophagosomal systems in neurons will provide

essential new insights into this important nexus in neuronal

survival.

Supporting Information

Figure S1 Vacuolation and cell death in glial cells. (A)

Still images of glial cells within the neuron preparation treated

with 1 mM YM-201636 for the times shown and imaged by phase

contrast. (B) Percentage of dead glial cells, n = 4. (C) Percentage of

vacuolated glial cells, n = 4. All results show mean 6 SEM.

Circle = DMSO, square = YM-201636. Significances relative to

DMSO *p,0.05, **p,0.01, ***p,0.001.

(TIF)

Figure S2 Morphological classification of vacuoles and
autophagic/lysosomal compartments. Primary hippocam-

pal neurons were treated with 1 mM YM-201636 for 4 h, fixed

and processed for electron microscopy. Autophagosomes present-

ing a double membrane and luminal content indistinguishable

from cytosol were classified as immature (AVi), whereas

autophagic compartments presenting a double membrane with

heterogeneous, electron-dense luminal content were classified as

degradative (AVd). Lysosomes were classified by a single limiting

membrane and electron-dense lumen (shown), which could also

include membrane sheets and lamellae (not shown).

(TIF)

Figure S3 Increased LC3 levels in YM-201636-treated
neurons. (A) Immunoblotting for LC3 and ß-actin in primary

hippocampal neurons treated with DMSO or 1 mM YM-201636

for 4 h or 22 h, or maintained in serum-free medium (Starved) for

4 h. (B) The level of LC3-II was normalised to total LC3 and
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quantified for each time point relative to the control treatment,

n = 4, mean 6 SEM, *p,0.05.

(TIF)

Movie S1 Time-lapse imaging of primary hippocampal
neurons – control. Cultured hippocampal neurons were grown

for 2 days in a 24-well plate before imaging with an inverted Axio

Observer microscope and AxioVision software (Zeiss). The

neurons were contained in a 37̊C, 5% CO2 chamber during

time-lapse imaging. DMSO was added at 0 min (immediately

following frame 1) and phase contrast images were subsequently

taken every 10 min over 48 h.

(MOV)

Movie S2 Time-lapse imaging of primary hippocampal
neurons –1 mM YM-201636. Cultured hippocampal neurons

were grown for 2 days in a 24-well plate before imaging with an

inverted Axio Observer microscope and AxioVision software

(Zeiss). The neurons were contained in a 37̊C, 5% CO2 chamber

during time-lapse imaging. YM-201636 (1 mM) was added at

0 min (immediately following frame 1) and phase contrast images

were subsequently taken every 10 min over 48 h.

(MOV)
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