24 research outputs found

    Gene finding in the chicken genome

    Get PDF
    BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods

    A cross-sectional analysis of the relationship between tobacco and alcohol outlet density and neighbourhood deprivation

    Get PDF
    Background There is a strong socio-economic gradient in both tobacco-and alcohol-related harm. One possible factor contributing to this social gradient may be greater availability of tobacco and alcohol in more socially-deprived areas. A higher density of tobacco and alcohol outlets is not only likely to increase supply but also to raise awareness of tobacco/alcohol brands, create a competitive local market that reduces product costs, and influence local social norms relating to tobacco and alcohol consumption. This paper examines the association between the density of alcohol and tobacco outlets and neighbourhood-level income deprivation. Methods Using a national tobacco retailer register and alcohol licensing data this paper calculates the density of alcohol and tobacco retail outlets per 10,000 population for small neighbourhoods across the whole of Scotland. Average outlet density was calculated for neighbourhoods grouped by their level of income deprivation. Associations between outlet density and deprivation were analysed using one way analysis of variance. Results There was a positive linear relationship between neighbourhood deprivation and outlets for both tobacco (p <0.001) and off-sales alcohol (p <0.001); the most deprived quintile of neighbourhoods had the highest densities of both. In contrast, the least deprived quintile had the lowest density of tobacco and both off-sales and on-sales alcohol outlets. Conclusions The social gradient evident in alcohol and tobacco supply may be a contributing factor to the social gradient in alcohol- and tobacco-related disease. Policymakers should consider such gradients when creating tobacco and alcohol control policies. The potential contribution to public health, and health inequalities, of reducing the physical availability of both alcohol and tobacco products should be examined in developing broader supply-side interventions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Posterior Polymorphous Corneal Dystrophy in Czech Families Maps to Chromosome 20 and Excludes the VSX1 Gene

    No full text
    PURPOSE. Posterior polymorphous corneal dystrophy (PPCD) is an autosomal dominant disorder, affecting both the corneal endothelium and Descemet's membrane. In the Czech Republic, PPCD is one of the most prevalent corneal dystrophies. The purpose of this study was to determine the chromosomal locus of PPCD in two large Czech families, by using linkage analysis. METHODS. Linkage analysis was performed on 52 members of two Czech families with PPCD and polymorphic microsatellite markers and lod scores were calculated. The candidate gene VSX1 was also screened for mutations. RESULTS. Significant lod scores were obtained with microsatellite markers on chromosome 20. Linkage analysis delineated the Czech PPCD locus to a 2.7-cM locus on chromosome 20, region p11.2, between flanking markers D20S48 and D20S139, which excluded VSX1 as the disease-causing gene in both families. In addition, the exclusion of VSX1 was confirmed by sequence analysis. CONCLUSIONS. This study reports the localization of PPCD in patients of Czech origin to chromosome 20 at p11.2. Linkage data and sequence analysis exclude VSX1 as causative of PPCD in two Czech families. This refined locus for PPCD overlaps the congenital hereditary endothelial dystrophy (CHED1) disease interval, and it is possible that these corneal dystrophies are allelic. (Invest Ophthalmol Vis Sci. 2005;46:4480 -4484
    corecore