17 research outputs found

    Corticortophin releasing factor 2 receptor agonist treatment significantly slows disease progression in mdx mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy results from mutation of the dystrophin gene, causing skeletal and cardiac muscle loss of function. The mdx mouse model of Duchenne muscular dystrophy is widely utilized to evaluate the potential of therapeutic regimens to modulate the loss of skeletal muscle function associated with dystrophin mutation. Importantly, progressive loss of diaphragm function is the most consistent striated muscle effect observed in the mdx mouse model, which is the same as in patients suffering from Duchenne muscular dystrophy.</p> <p>Methods</p> <p>Using the mdx mouse model, we have evaluated the effect that corticotrophin releasing factor 2 receptor (CRF2R) agonist treatment has on diaphragm function, morphology and gene expression.</p> <p>Results</p> <p>We have observed that treatment with the potent CRF2R-selective agonist PG-873637 prevents the progressive loss of diaphragm specific force observed during aging of mdx mice. In addition, the combination of PG-873637 with glucocorticoids not only prevents the loss of diaphragm specific force over time, but also results in recovery of specific force. Pathological analysis of CRF2R agonist-treated diaphragm muscle demonstrates that treatment reduces fibrosis, immune cell infiltration, and muscle architectural disruption. Gene expression analysis of CRF2R-treated diaphragm muscle showed multiple gene expression changes including globally decreased immune cell-related gene expression, decreased extracellular matrix gene expression, increased metabolism-related gene expression, and, surprisingly, modulation of circadian rhythm gene expression.</p> <p>Conclusion</p> <p>Together, these data demonstrate that CRF2R activation can prevent the progressive degeneration of diaphragm muscle associated with dystrophin gene mutation.</p

    Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.</p> <p>Hypothesis</p> <p>We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and force production in animals with chronic disease and in aged animals.</p> <p>Methods</p> <p>We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.</p> <p>Results</p> <p>In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared to the corresponding vehicle treated animals.</p> <p>Conclusions</p> <p>These data demonstrate that the underlying physiological conditions associated with chronic diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to maintain skeletal muscle mass and force production.</p

    Potential energy surfaces of WC6 clusters in different spin states

    No full text
    Stochastic explorations of the structural possibilities of neutral WC6 clusters in several spin states lead to very rich and complex potential energy surfaces, with geometries quite different from those of pure carbon clusters at the PBE0/def2-TZVP level. The global minimum is predicted to be a triplet-state semicyclic C6 conformation having every carbon in direct coordination to the W atom. Interaction energies are comparable to those of C7 clusters, revealing very strong W–C bonding. Our results suggest that C–C interactions in the clusters should be considered as intermediate between single and double bonds
    corecore